Featured Research

from universities, journals, and other organizations

Effective Solution Found For Lack Of Directionality Of Some Lasers

Date:
January 15, 2009
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Terahertz cascade lasers are a new family of semi-conductor lasers which emit in the frequency range of the terahertz, or 1012 hertz. Because of their potential applications, they currently raise considerable interest, despite one major drawback: their output beam is markedly divergent. To solve this problem, scientists have used special microscopic components called photonic crystals.

Terahertz cascade lasers (1) are a new family of semi-conductor lasers which emit in the frequency range of the terahertz, or 1012 hertz. Because of their potential applications, they currently raise considerable interest, despite one major drawback: their output beam is markedly divergent. To solve this problem, a French-English collaboration (2) led by Raffaele Colombelli, researcher at CNRS, has used special microscopic components called photonic crystals. In combination with the laser, the team was able to control the laser beam and considerably restrict its divergence. Published in the journal Nature, this finding opens the way to a large number of promising applications, for instance in the field of terahertz medical imaging.

Related Articles


Situated in the far infrared range of the electromagnetic spectrum, between mid-infrared and microwaves, terahertz waves have some major advantages: they can penetrate through skin, clothing, paper, wood, card and plastic. These properties offer applications in medical imaging, spectroscopy, and environmental detection (detection of biological agents, pollutants etc.). .

Terahertz cascade laser systems raise considerable interest due to their numerous advantages: they are compact (3), they use electrical energy -- reference is made to electrically "pumped" lasers (4) - and they operate in the terahertz range of the electromagnetic spectrum (THz). Indeed, the generation of radiation in the frequency range between 1 and 10 THz (also called the THz "gap") with a compact device has proven extremely challenging. This explains the considerable interest raised by terahertz cascade lasers, which are the only compact sources (smaller than a millimeter) operating within this range of frequencies. However, these promising lasers have one weakness: the marked divergence of their output beam, which prevents their widespread use.

The scientists used very small structures, photonic crystals, to influence the optical properties of the material and thus enable control over the light trajectory. By combining these components with the terahertz laser, they managed to design an ingenious system that emits terahertz waves but also, and above all, enables precise control of the laser beam. Thanks to this effective technology, this beam now diverges very little.

This novel system opens up numerous fundamental and applied perspectives. It is now necessary for the researchers to maximize the output power of these lasers. Furthermore, better control of the photonic crystal technology may enable the design of new terahertz lasers of an even smaller size. The technique thus developed could be generalized to other lasers operating in different ranges of wavelengths. Finally, these results may give rise to several applications, notably in the fields of spectroscopy and THz imaging.

This work was made possible by the EURYI award given in 2004 to Raffaele Colombelli by the European Science Foundation. This allowed him to set up a research team within the Institut d'électronique fondamentale at the Faculty of Sciences in Orsay, where he is supervising the doctoral thesis of Yannick Chassagneux, the lead author of this publication.

Notes

  1. The first terahertz quantum cascade laser was invented in 2002.
  2. Belonging to two units: the Institut d'électronique fondamentale (CNRS / Université Paris-Sud 11) and the laboratory "Matériaux et phénomènes quantiques" (CNRS / Université Paris Diderot -- Paris 7) and to the Universities of Cambridge and Leeds.
  3. This is a characteristic of semi-conductor lasers, which take up little space (unlike gas lasers).
  4. The alternative is a laser with an optical pump, but a second laser is necessary to supply energy.

Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Chassagneux et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature, 2009; 457 (7226): 174 DOI: 10.1038/nature07636

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Effective Solution Found For Lack Of Directionality Of Some Lasers." ScienceDaily. ScienceDaily, 15 January 2009. <www.sciencedaily.com/releases/2009/01/090113074421.htm>.
CNRS (Délégation Paris Michel-Ange). (2009, January 15). Effective Solution Found For Lack Of Directionality Of Some Lasers. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/01/090113074421.htm
CNRS (Délégation Paris Michel-Ange). "Effective Solution Found For Lack Of Directionality Of Some Lasers." ScienceDaily. www.sciencedaily.com/releases/2009/01/090113074421.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) — Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins