Featured Research

from universities, journals, and other organizations

How Defective DNA Repair Triggers Two Neurological Diseases

Date:
January 18, 2009
Source:
St. Jude Children's Research Hospital
Summary:
Scientists have teased apart the biological details distinguishing two related neurological diseases -- ataxia telangiectasia-like disease and Nijmegen breakage syndrome.

Scientists at St. Jude Children's Research Hospital have teased apart the biological details distinguishing two related neurological diseases—ataxia telangiectasia-like disease (ATLD) and Nijmegen breakage syndrome (NBS).

Related Articles


Both disorders arise from defects in a central component of the cell's machinery that repairs damaged DNA, but each disease presents with distinct pathologies. Defects in DNA repair dramatically increase the risk of cancer, which is found in NBS. However, NBS is also characterized by the occurrence of small brain size, or microcephaly, while in contrast, ATLD causes predominantly neurodegeneration.

The research involved the use of mouse models of each the diseases to analyze how the gene defects in ATLD and NBS give rise to the different pathologies. The researchers published their findings in the Jan.15, 2009, issue of the journal Genes & Development.

"Besides shedding light on the rare diseases, the findings may also help to understand how defective DNA repair can selectively affect different organs and how this leads to cancer in some situations," said Peter McKinnon, Ph.D., associate member of the St. Jude Department of Genetics and Tumor Cell Biology and the paper's senior author.

To explore the differences between ATLD and NBS, the researchers used mice engineered to have defects in the causative genes, which produce two proteins that help form a critical component of the DNA repair machinery, called the MRN complex. The MRN complex zeroes in on broken DNA segments and attaches to them. It then recruits another important DNA repair protein, called ATM, to launch the repair process. However, if the damage is too severe, ATM may also trigger programmed cell death called apoptosis.

"It happens that defects in ATM also lead to a disease similar to ATLD, highlighting the connections between diseases resulting from defects in this DNA repair pathway," McKinnon said.

The mice engineered to mimic ATLD, like their human counterparts, had defective genes that produce a protein called Mre11; while NBS mice were engineered to have defects in the gene for the protein called Nbs1.

In their experiments, the researchers produced increased DNA-damage stress in the two types of engineered mice, either by using radiation or knocking out a key enzyme that stitches together broken DNA ends.

The researchers then compared the resulting pathologies in the two types of mice. The scientists found that the brain cells of the ATLD mice but not the NBS mice showed a resistance to apoptosis, meaning that the DNA-damaged cells were more likely to survive, even when crippled. Such cells would ultimately die, however, producing the neurodegeneration characteristic of ATLD in humans. In contrast, the NBS mice showed normal apoptosis, but because fewer brain cells survived, developed significantly smaller brains, like their human counterparts.

"Thus, these findings have allowed us to understand how these different mutations in this one DNA repair complex can lead to different neuropathological outcomes," McKinnon said. The findings could also lead to understanding how carriers of the disease genes are more prone to cancer.

"There is a suspicion that people who carry these mutations may be predisposed to cancer and also more susceptible to chemotherapy agents or even to standard X-rays," McKinnon said. "Those agents induce the type of DNA damage that requires the MRN complex and ATM for repair. More generally, studies of the MRN complex and ATM are fundamental to understanding how to prevent changes to DNA that lead to cancer.

"Understanding more about how these proteins signal and interact, and how different cells in the body transduce the DNA damage signal, is of fundamental biological importance," McKinnon said. "This knowledge is necessary not only for understanding DNA repair diseases but for understanding the broader implications of maintaining of the stability of DNA."

Other authors of this paper include Erin Shull, Youngsoo Lee, Jingfeng Zhao and Helen Russell (St. Jude); John Petrini and Travis Stracker (Memorial Sloan Kettering Cancer Center and Cornell University Graduate School of Medical Sciences); and Hironobu Nakane (formerly of St. Jude).

This research was supported in part by the National Institutes of Health, the National Cancer Institute and ALSAC.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Cite This Page:

St. Jude Children's Research Hospital. "How Defective DNA Repair Triggers Two Neurological Diseases." ScienceDaily. ScienceDaily, 18 January 2009. <www.sciencedaily.com/releases/2009/01/090114200007.htm>.
St. Jude Children's Research Hospital. (2009, January 18). How Defective DNA Repair Triggers Two Neurological Diseases. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2009/01/090114200007.htm
St. Jude Children's Research Hospital. "How Defective DNA Repair Triggers Two Neurological Diseases." ScienceDaily. www.sciencedaily.com/releases/2009/01/090114200007.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com
Indiana Permits Needle Exchange as HIV Cases Skyrocket

Indiana Permits Needle Exchange as HIV Cases Skyrocket

Reuters - US Online Video (Mar. 26, 2015) Governor Mike Pence declares the recent HIV outbreak in rural Indiana a "public health emergency" and authorizes a short-term needle-exchange program. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins