Featured Research

from universities, journals, and other organizations

Motor Skill Learning May Be Enhanced By Mild Brain Stimulation

Date:
January 20, 2009
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
People who received a mild electrical current to a motor control area of the brain were significantly better able to learn and perform a complex motor task than those in control groups. The findings could hold promise for enhancing rehabilitation for people with traumatic brain injury, stroke and other conditions.

People who received a mild electrical current to a motor control area of the brain were significantly better able to learn and perform a complex motor task than those in control groups. The findings could hold promise for enhancing rehabilitation for people with traumatic brain injury, stroke and other conditions.

The study is presented in the January 20, 2009 early online edition of the Proceedings of the National Academy of Sciences, and was conducted by researchers at the National Institutes of Health (NIH). The research team from NIH's National Institute of Neurological Disorders and Stroke (NINDS) worked in collaboration with investigators at Columbia University in New York City and Johns Hopkins University in Baltimore.

Motor skills, which are used for activities from typing and driving, to sports, require practice and learning over a prolonged period of time. During practice, the brain encodes information about how to perform the task, but even during periods of rest, the brain is still at work strengthening the memory of doing the task. This process is known as consolidation.

Subjects in this study were presented with a novel and challenging motor task, which involved squeezing a "joy stick" to play a targeting game on a computer monitor, which they practiced over five consecutive days. During practice, one group received 20 minutes of transcranial direct current stimulation (tDCS) and the other group received only a 30 second "sham" stimulation. tDCS involves mild electrical stimulation applied through surface electrodes on the head, and works by modulating the excitability, or activity, of cells in the brain's outermost layers. In this study, Dr. Cohen and his team directed tDCS to the primary motor cortex, the part of the brain that controls movement.

Over the five-day training period, the skill of the tDCS group improved significantly more that that of the control (sham) group, apparently through an effect on consolidation. During the three month follow-up period, the two groups forgot the skill at about the same rate, but the tDCS group continued to perform better because they had learned the skill better by the end of training.


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "Motor Skill Learning May Be Enhanced By Mild Brain Stimulation." ScienceDaily. ScienceDaily, 20 January 2009. <www.sciencedaily.com/releases/2009/01/090119210528.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2009, January 20). Motor Skill Learning May Be Enhanced By Mild Brain Stimulation. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/01/090119210528.htm
NIH/National Institute of Neurological Disorders and Stroke. "Motor Skill Learning May Be Enhanced By Mild Brain Stimulation." ScienceDaily. www.sciencedaily.com/releases/2009/01/090119210528.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins