Featured Research

from universities, journals, and other organizations

Motor Skill Learning May Be Enhanced By Mild Brain Stimulation

Date:
January 20, 2009
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
People who received a mild electrical current to a motor control area of the brain were significantly better able to learn and perform a complex motor task than those in control groups. The findings could hold promise for enhancing rehabilitation for people with traumatic brain injury, stroke and other conditions.

People who received a mild electrical current to a motor control area of the brain were significantly better able to learn and perform a complex motor task than those in control groups. The findings could hold promise for enhancing rehabilitation for people with traumatic brain injury, stroke and other conditions.

The study is presented in the January 20, 2009 early online edition of the Proceedings of the National Academy of Sciences, and was conducted by researchers at the National Institutes of Health (NIH). The research team from NIH's National Institute of Neurological Disorders and Stroke (NINDS) worked in collaboration with investigators at Columbia University in New York City and Johns Hopkins University in Baltimore.

Motor skills, which are used for activities from typing and driving, to sports, require practice and learning over a prolonged period of time. During practice, the brain encodes information about how to perform the task, but even during periods of rest, the brain is still at work strengthening the memory of doing the task. This process is known as consolidation.

Subjects in this study were presented with a novel and challenging motor task, which involved squeezing a "joy stick" to play a targeting game on a computer monitor, which they practiced over five consecutive days. During practice, one group received 20 minutes of transcranial direct current stimulation (tDCS) and the other group received only a 30 second "sham" stimulation. tDCS involves mild electrical stimulation applied through surface electrodes on the head, and works by modulating the excitability, or activity, of cells in the brain's outermost layers. In this study, Dr. Cohen and his team directed tDCS to the primary motor cortex, the part of the brain that controls movement.

Over the five-day training period, the skill of the tDCS group improved significantly more that that of the control (sham) group, apparently through an effect on consolidation. During the three month follow-up period, the two groups forgot the skill at about the same rate, but the tDCS group continued to perform better because they had learned the skill better by the end of training.


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "Motor Skill Learning May Be Enhanced By Mild Brain Stimulation." ScienceDaily. ScienceDaily, 20 January 2009. <www.sciencedaily.com/releases/2009/01/090119210528.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2009, January 20). Motor Skill Learning May Be Enhanced By Mild Brain Stimulation. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2009/01/090119210528.htm
NIH/National Institute of Neurological Disorders and Stroke. "Motor Skill Learning May Be Enhanced By Mild Brain Stimulation." ScienceDaily. www.sciencedaily.com/releases/2009/01/090119210528.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins