Featured Research

from universities, journals, and other organizations

Scientists Test Blast-resistant Concrete

Date:
January 23, 2009
Source:
University of Liverpool
Summary:
Engineers have tested a new form of concrete designed to reduce the impact of bomb blasts in public areas.

Engineers at the University of Liverpool have tested a new form of concrete designed to reduce the impact of bomb blasts in public areas.

The fibre-reinforced concrete was found to absorb a thousand times more energy than plain concrete and could therefore be used for bomb-proof litter bins and protection barriers. Although not yet used in the UK the concrete has been utilised in Australia in the design of slender footbridges and in the roofs of government buildings to strengthen them against mortar attack.

University Engineers working in partnership with the Centre for the Protection of National Infrastructure explored the limits of the concrete’s capability through a range of tests for dynamic bending and “shear” or indirect stress. These culminated in a series of high explosion blast tests at RAF Spadeadam, in Cumbria, each representing a typical IRA car bomb.

The Ultra High Performance Fibre Reinforced Concrete (UHPFRC) resisted the high explosion blast without any disintegration from the back of the panels causing shrapnel. This is important in the use of protection barriers designed to shield people from bomb blasts.

Professor Steve Millard said: “Many of London’s tourist landmarks are surrounded by concrete to protect against terrorist attacks. However, the material does not absorb sufficient energy to prevent the creation of shrapnel which is one of the most lethal consequences of a bomb blast. UHPFRC is different because needle-thin steel fibres are added into the concrete mix instead of steel reinforcing bars to increase its tensile strength.

“We carried out a number of high explosion tests; gradually reducing the distance to the explosive charge to examine the concrete’s bending strength and capacity to absorb energy. Our results showed the new UHPFRC material had an enhanced tension and compression strength of 500% greater than conventional concrete. This makes UHPFRC a suitable material for use in anti-terrorism applications.”

The research was undertaken in collaboration with the University of Sheffield and was funded by the Engineering and Physical Sciences Research Council under its Think Crime-4 Initiative.


Story Source:

The above story is based on materials provided by University of Liverpool. Note: Materials may be edited for content and length.


Cite This Page:

University of Liverpool. "Scientists Test Blast-resistant Concrete." ScienceDaily. ScienceDaily, 23 January 2009. <www.sciencedaily.com/releases/2009/01/090122080930.htm>.
University of Liverpool. (2009, January 23). Scientists Test Blast-resistant Concrete. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/01/090122080930.htm
University of Liverpool. "Scientists Test Blast-resistant Concrete." ScienceDaily. www.sciencedaily.com/releases/2009/01/090122080930.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins