Featured Research

from universities, journals, and other organizations

Diabetes Treatment May Lie In Helping Muscles To Burn Fat Better

Date:
January 29, 2009
Source:
Garvan Institute of Medical Research
Summary:
Scientists in Sydney and Melbourne Australia have produced results that could silence the current debate about exactly how fat molecules clog up muscle cells, making them less responsive to insulin. The finding is an important milestone in understanding the mechanisms of obesity related insulin resistance, a precursor of Type 2 diabetes.

Scientists in Sydney and Melbourne have produced results that could silence the current debate about exactly how fat molecules clog up muscle cells, making them less responsive to insulin.

The finding is an important milestone in understanding the mechanisms of obesity related insulin resistance, a precursor of Type 2 diabetes.

Dr Clinton Bruce, first working with Professor Ted Kraegen from Sydney's Garvan Institute of Medical Research, and then with Professor Mark Febbraio from Melbourne's Baker IDI Heart and Diabetes Institute, has added to evidence that fat molecules clog up the cytosol, or cell interior, but not the mitochondrion, or energy powerhouse of the cell.

This is an important distinction because the groups have also found a way to reduce the build-up of fat molecules in the cytosol by increasing the ability of mitochondria to take in fat molecules and burn them.

The finding, already online and critical for our understanding of fat metabolism, will be published in a future issue of the prestigious international journal Diabetes.

Professor Kraegen believes the finding indicates a direction for further pre-clinical research. "There's a lot of work being put into developing new drugs and methodologies for improving insulin action," he said.

"Our work clarifies what are likely to be the important therapeutic directions to improve insulin action in muscle and hence new approaches for the treatment of Type 2 diabetes."

Kraegen and colleagues made one small change to a single muscle in one leg of a rat, allowing that muscle to burn fat molecules better. To do this, they overexpressed a protein (CPT1) that acts like a "gate" or "tap" to control entry of fat molecules into mitochondria.

The changed muscle burned more fat molecules and became significantly more responsive to insulin than the equivalent muscle in the opposite leg, which had not been re-engineered.

While this result is very promising, it also sets up a conundrum, which Professors Kraegen and his colleagues at Garvan are examining in their next phase of research.

The problem they face is that a muscle uses a certain amount of energy depending on the work it is doing. If it gets that energy by burning more fats, it will require less glucose, creating an imbalance of another kind.

"So what we're trying to do is mimic exercise with pharmacological agents," explained Kraegen.

"We're examining agents that make the muscle burn more fuel to get the same amount of energy. In other words, we're trying to make energy conversion less efficient."

"If we succeed in producing this effect, it will make our current finding very potent indeed."


Story Source:

The above story is based on materials provided by Garvan Institute of Medical Research. Note: Materials may be edited for content and length.


Cite This Page:

Garvan Institute of Medical Research. "Diabetes Treatment May Lie In Helping Muscles To Burn Fat Better." ScienceDaily. ScienceDaily, 29 January 2009. <www.sciencedaily.com/releases/2009/01/090128092344.htm>.
Garvan Institute of Medical Research. (2009, January 29). Diabetes Treatment May Lie In Helping Muscles To Burn Fat Better. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/01/090128092344.htm
Garvan Institute of Medical Research. "Diabetes Treatment May Lie In Helping Muscles To Burn Fat Better." ScienceDaily. www.sciencedaily.com/releases/2009/01/090128092344.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins