Featured Research

from universities, journals, and other organizations

Calar Alto: Darkness In The Infrared

Date:
January 30, 2009
Source:
Calar Alto Observatory-CAHA
Summary:
The darkness and quality of the sky at Calar Alto Observatory is outstanding not only for astronomical observations in visible light, but also in the infrared. A recent study based on an extensive data set demonstrates that Calar Alto summit occupies one of the world leading places among the darkest astronomical observatories in the infrared. This analysis complements a previous scientific study centred on observations in visible light. It is confirmed that the fraction of useful time for astronomical observations at Calar Alto is around 70%.

Star trails over the Zeiss 2.5 m telescope of Calar Alto Observatory.
Credit: Felix Hormuth

The darkness and quality of the sky at Calar Alto Observatory is outstanding not only for astronomical observations in visible light, but also in the infrared. A recent study based on an extensive data set demonstrates that Calar Alto summit occupies one of the world leading places among the darkest astronomical observatories in the infrared. This analysis complements a previous scientific study centred on observations in visible light. It is confirmed that the fraction of useful time for astronomical observations at Calar Alto is around 70%.

Modern astronomy relies not only on visible light. Current technology allows astronomers to study the universe also through the emission that celestial bodies send towards us also in invisible regions of the electromagnetic spectrum, such as ultraviolet light, infrared, and radio radiation.

The rainbow displays the whole set of colours of visible light: short (violet, blue), medium (green, yellow) and long (orange, red) wavelengths can be mixed up to produce white light. But the stars emit "light" with wavelengths even longer than those corresponding to red colour. This light, "redder than red", is usually known as infrared radiation. It cannot be seen with our eyes, but modern detectors and cameras can capture it. The study of infrared radiation coming from space offers a wealth of information about star birth, remote galaxies, the structure of the universe and many other fascinating problems of contemporary astrophysics.

For this reason, many state-of-the-art astronomical facilities devote a good part of their time and technology to the study of the universe in the infrared part of the spectrum, and having a sky of good infrared quality is mandatory for this.

An exhaustive study analysing the quality of the sky at Calar Alto Observatory in the infrared has been published recently. This scientific work extends, complements and confirms a previous one centred on visible light. The data used were taken with two of the telescopes of Calar Alto Observatory and two different infrared cameras, during the last four years. This has allowed a throughout analysis of the sky brightness in three different infrared "colours" (or "bands": J, H and K), assessing the sky quality and seasonal variations on the basis of a statistically significant and high-quality data set. A good fraction of the sky brightness measurements were performed on images obtained in the frame of one of the most outstanding scientific projects being carried out at Calar Alto: the ALHAMBRA survey.

The authors of this work, leaded by Sebastiαn Sαnchez, conclude that "Calar Alto is as dark in the near-infrared as most of the other astronomical sites in the world with which we could compare it." Even more, for the J and H bands, "Calar Alto can be quoted among the darkest astronomical sites in the world", and for the K band "its sky brightness is clearly comparable with most astronomical sites, apart from Mauna Kea." One more result refers to the instrumental contribution to the infrared background in the K band, that is shown to be really low compared to the natural sky brightness.

The article also refers to the air turbulence and its impact on the sharpness of astronomical images (what is usually called the "seeing"). The authors conclude that the contribution of domes, telescopes and instruments to the degradation of the image quality is only around a 10%, meaning that the instruments take good profit from the intrinsically good natural conditions at the mountain.

Finally, the study evaluates the fraction of the time that is useful for astronomical observations, reaching conclusions fully compatible with the previous study, implying that at Calar Alto approximately 70% of the time can be used for scientific work.

Calar Alto Observatory, with its set of telescopes and ancillary facilities, remains the most important astronomical resource in the European continent. The authors of this study conclude that "this observatory is a good candidate for the location of future large aperture optical/near-infrared telescopes".


Story Source:

The above story is based on materials provided by Calar Alto Observatory-CAHA. Note: Materials may be edited for content and length.


Cite This Page:

Calar Alto Observatory-CAHA. "Calar Alto: Darkness In The Infrared." ScienceDaily. ScienceDaily, 30 January 2009. <www.sciencedaily.com/releases/2009/01/090130084118.htm>.
Calar Alto Observatory-CAHA. (2009, January 30). Calar Alto: Darkness In The Infrared. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2009/01/090130084118.htm
Calar Alto Observatory-CAHA. "Calar Alto: Darkness In The Infrared." ScienceDaily. www.sciencedaily.com/releases/2009/01/090130084118.htm (accessed September 1, 2014).

Share This




More Space & Time News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) — The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) — Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) — The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins