Featured Research

from universities, journals, and other organizations

Mesh-like Network Of Arteries Adjusts To Restore Blood Flow To Stroke-injured Brain

Date:
February 8, 2009
Source:
University of California - San Diego
Summary:
A grid of small arteries at the surface of the brain redirects flow and widens at critical points to restore blood supply to tissue starved of nutrients and oxygen following a stroke, a study published this week has found.

Surface arteries brain dive into the brain to feed capillaries. The mesh-like network adjusts to restore normal supply when blood slows after a stroke.
Credit: Andy Shih

A grid of small arteries at the surface of the brain redirects flow and widens at critical points to restore blood supply to tissue starved of nutrients and oxygen following a stroke, a new study has found.

“This is optimistic news,” said David Kleinfeld, a physics professor at the University of California, San Diego, whose group studies blood flow in animal models of stroke.

Damage from stroke can continue for hours or even days as compromised brain tissue surrounding the core injury succumbs to deprivation of oxygen and nutrients.

“This is the area doctors are trying to protect after a stroke,” said Andy Shih, a postdoctoral fellow in Kleinfeld’s group who conducted the experiments. “Those neurons are teetering on the edge of death and survival.”

Previous work with animal models had found that blood flow can persistently slow in the aftermath of a stroke, which would hinder the delivery of drugs that might help recovery. But those studies only measured the speed of the blood.

By measuring both the speed of blood cells moving through individual small arteries and the diameters of the same vessels, the scientists found that the arteries dilate to maintain a constant delivery of blood cells.

“You find that the velocity has gone down, but that the diameter—on average—exactly compensates,” Kleinfeld said.

Patrick Drew and Philbert Tsai in Kleinfeld’s group, and Beth Friedman and Patrick Lyden, MD, of the neuroscience department at UC San Diego’s School of Medicine co-authored the paper. Lyden, whose contributions to a 1995 study proved that the drug tPA can reverse the course of stroke when administered promptly, also directs the UC San Diego Stroke Center. The Journal of Cerebral Blood Flow and Metabolism published their new finding online January 28.

Key to this resilience, it seems, is the structure of the vascular network overlying the brain.

“Vessels on the surface of the brain have a mesh-like architecture,” Kleinfeld said. “One consequence of that is that it operates like a grid system that redistributes “current flow as you need it.”

“City traffic freezes a lot less than you would think because once a street gets bogged down, you can move over to another street,” he said. “This seems to be what happens on the surface of the brain.”

Flows through the surface vessels reversed and stalled, as previously observed, but those changes helped to redistribute blood to ensure a steady supply though vessels that penetrate into the brain.

Shih focused his measurements on small arteries, called arterioles, at the point where they dive into the brain to supply a discrete patch of the cortex, a juncture that is vulnerable to occlusions that can cause microstrokes this group’s previous work has found.

“These are extremely important. A single penetrating arteriole will feed a column of tissue,” Shih said. “These are bottlenecks in flow.”

The penetrating vessels neither reversed nor stalled, even though many connected to loops and bridges in the vascular network that could have allowed that to happen. Even when the pressure dropped permanently as a result of stroke damage, wider lanes allowed the network to deliver red blood cells at the same rate.

“Diameter is the major determinant to how blood actually flows through vessels. Open up a blood vessel a little bit and you’ll have a huge change in the amount of blood that goes through,” Shih said. “Blood flow comes back, and it seems that these vessels are very resistant to the stroke. They function quite normally.”

The work was funded by the Canadian Institutes of Health Research, National Institutes of Health, National Science Foundation and Veterans Medical Research Foundation.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Mesh-like Network Of Arteries Adjusts To Restore Blood Flow To Stroke-injured Brain." ScienceDaily. ScienceDaily, 8 February 2009. <www.sciencedaily.com/releases/2009/01/090130182930.htm>.
University of California - San Diego. (2009, February 8). Mesh-like Network Of Arteries Adjusts To Restore Blood Flow To Stroke-injured Brain. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/01/090130182930.htm
University of California - San Diego. "Mesh-like Network Of Arteries Adjusts To Restore Blood Flow To Stroke-injured Brain." ScienceDaily. www.sciencedaily.com/releases/2009/01/090130182930.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins