Featured Research

from universities, journals, and other organizations

Pancreatic Tumor Growth Prevented In Mice By Inhibiting Key Protein

Date:
February 2, 2009
Source:
Stanford University Medical Center
Summary:
Researchers have identified a protein critical for the growth of pancreatic cancer. Blocking the expression of the protein slowed or prevented tumor growth in mice and made cultured cancer cells vulnerable to the conditions of low oxygen that occur in solid tumors.

Researchers at Stanford University School of Medicine have identified a protein critical for the growth of pancreatic cancer. Blocking the expression of the protein slowed or prevented tumor growth in mice and made cultured cancer cells vulnerable to the conditions of low oxygen that occur in solid tumors.

Related Articles


"This research clearly shows that inhibiting the protein inhibits the tumor's ability to grow," said cancer biologist Amato Giaccia, PhD. "Ultimately, we'd like to be able to specifically knock out the expression of this protein in pancreatic tumors in humans."

Pancreatic cancer is a highly aggressive and deadly disease that accounts for more than 30,000 deaths in the United States annually, and current therapies are largely ineffective.

"Right now, we have very little to offer these patients," said Giaccia. He is the Jack, Lulu and Sam Willson Professor and professor of radiation oncology and the senior author of the research, which will be published Feb. 1 in the journal Cancer Research. Giaccia is also a member of the Stanford Cancer Center.

The researchers studied a protein called connective tissue growth factor, or CTGF. Also known as CCN2, the protein is involved in the abnormal growth of connective tissue in response to injury or disease. It was also thought to be involved in pancreatic tumor progression, although the exact role it played was unknown.

Giaccia and his collaborators found that human pancreatic cancer cells expressing high levels of CCN2 grew robustly when injected under the skin of mice. In fact, in the developing tumor these cells soon out-competed others that expressed lower levels of the protein. Conversely, pancreatic cancer cells in which CCN2 expression was suppressed were either less likely or unable to form tumors when injected into mice.

The researchers observed similar effects when the cancer cells were injected directly into the animals' pancreases. Cancer cells expressing high levels of CCN2 formed tumors that grew more rapidly and metastasized more aggressively than did those expressing lower levels, and the mice died sooner than others injected with cancer cells expressing less CCN2.

It's difficult for many types of rapidly growing solid tumors to recruit and build enough blood vessels to keep all the cancer cells adequately oxygenated. Normal cells undergo a process of programmed cell death when oxygen levels drop too far. Overcoming this response to low oxygen levels — a condition called hypoxia — is a critical step in tumor progression.

The researchers wondered if CCN2 played a role in keeping tumor cells alive in hypoxic conditions. If so, this might explain why CCN2-expressing cancer cells are favored during tumor growth. They found that blocking CCN2 expression in cultured pancreatic cancer cells made them significantly more sensitive to hypoxia-induced death than their peers. Additionally, CCN2 was more highly expressed in pancreatic tumor samples from human patients than in neighboring tissue and CCN2 expression seemed to correlate with the expression of another protein expressed by hypoxic cells. Finally, hypoxic conditions themselves cause the pancreatic cancer cells to make CCN2.

Many other cellular conditions can also kick-start CCN2 expression, including the presence of CCN2 itself. The activation of other pathways known to be involved in cancer also increases its expression. As a result, many of the events that occur in a developing tumor act as a kind of perfect storm to support the production of ever-larger amounts of CCN2, which then support additional tumor growth and metastasis.

Looking ahead, the researchers would like to know whether people with pancreatic cancer could benefit from therapies targeting CCN2. A phase-1 clinical trial testing the safety of an antibody that binds CCN2 and blocks its activity in a small number of patients began in December at Stanford and Dartmouth-Hitchcock Medical Center. Phase-1 clinical trials are not designed to determine whether a treatment works — only whether it is safe enough for further testing. Albert Koong, MD, PhD, an assistant professor of radiation oncology and a member of the Cancer Center, is the principal investigator for the Stanford arm of the trial.

"We saw a pronounced effect of CCN2 inhibition in these experiments in mice," said Giaccia. "Our hope is that one day a combination of standard therapy and antibody treatment will have an effect on tumor progression in human patients."

Giaccia's Stanford collaborators on the research include former post-doctoral scholars Kevin Bennewith, PhD, who is now a research scientist at the British Columbia Cancer Research Centre in Vancouver; Janine Erler, PhD, who is now a group leader at the Institute of Cancer Research at Chester Beatty Laboratories in London; post-doctoral scholars Xin Huang, PhD; and Christine Ham, MD; assistant professor of radiation oncology Edward Graves, PhD; associate professor of pathology Neeraja Kambham, MD; assistant professor of surgery George Yang, MD, PhD ; and Albert Koong.

The research was supported by a grant from the National Institutes of Health, the Blue Dot Fund, and the Canadian Institutes of Health Research. The phase-I clinical trial is sponsored by San Francisco-based FibroGen, Inc. Amato Giaccia is a paid consultant for FibroGen; FibroGen did not contribute any reagents or intellectual input to the current study.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Pancreatic Tumor Growth Prevented In Mice By Inhibiting Key Protein." ScienceDaily. ScienceDaily, 2 February 2009. <www.sciencedaily.com/releases/2009/02/090201094129.htm>.
Stanford University Medical Center. (2009, February 2). Pancreatic Tumor Growth Prevented In Mice By Inhibiting Key Protein. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/02/090201094129.htm
Stanford University Medical Center. "Pancreatic Tumor Growth Prevented In Mice By Inhibiting Key Protein." ScienceDaily. www.sciencedaily.com/releases/2009/02/090201094129.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Americans Drink More in the Winter

Americans Drink More in the Winter

Buzz60 (Dec. 22, 2014) The BACtrack breathalyzer app analyzed Americans' blood alcohol content and found out a whole lot of interesting things about their drinking habits. Mara Montalbano (@maramontalbano) has more. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins