Featured Research

from universities, journals, and other organizations

Utilities: Protecting Electrical Equipment Against Lightning Damage

Date:
February 17, 2009
Source:
Georgia Institute of Technology
Summary:
Firing bolts of lightning at expensive electrical equipment is all in a day's work at the National Electric Energy Testing Research and Applications Center. The goal for the lightning research and other testing done by the center is to improve reliability for the nation's electric energy transmission and distribution system.

A 2.2 million volt impulse generator is used to test electrical equipment at the National Electric Energy Testing Research and Applications Center.
Credit: Georgia Tech Photo: Gary Meek

Firing bolts of lightning at expensive electrical equipment is all in a day’s work at NEETRAC – the National Electric Energy Testing Research and Applications Center. The goal for the lightning research and other testing done by the center is to improve reliability for the nation’s electric energy transmission and distribution system.

Related Articles


The 2.2 million-volt impulse generator needed to produce artificial lightning is just one part of the test gear used to evaluate utility industry equipment that ranges from wooden poles and aluminum transmission lines to transformers and switches. Part of Georgia Tech’s School of Electrical and Computer Engineering, the center is supported by 32 equipment manufacturers and utility companies that provide nearly 60 percent of the electricity used in the United States.

A major part of the work is ensuring reliability during the lightning storms that threaten utilities and their customers.

“Lightning is electricity of the wrong sort,” explained Rick Hartlein, NEETRAC’s director. “Electric utilities must do a number of things to keep lightning from damaging the power delivery system, which can cause power outages or damage to equipment plugged into electrical outlets in homes and businesses.”

Thunderstorms can produce more than 100 million volts – compared to the 120 volts in household wall outlets and 240 volts that power large home appliances. To deal with those added millions of volts, utilities rely on a complex array of lightning arrestors, static lines and grounding systems.

Lightning arrestors, for instance, contain special materials that under normal conditions do not permit the flow of electrical current. But when they sense a sudden surge of electricity from a lightning strike, they change properties in a few microseconds, becoming conductors rather than insulators. When strategically placed on the electric grid, the arrestors carry the lightning surges away to the ground – after which the arrestors return to their role as insulators.

Without the arrestors, lightning could arc across the insulators that support power lines, causing interruptions and damaging other equipment. In severe cases, the damage could cause line circuit breakers to trip, resulting in power outages to businesses, hospitals and whole communities.

At NEETRAC’s facilities near Atlanta’s Hartsfield-Jackson International Airport, Hartlein and his research team evaluate the arrestors and help utilities choose the right locations for them.

“Lightning arrestors are not inexpensive devices and they must be maintained once they are put on the system,” Hartlein said. “You want to distribute them on the system frequently enough to protect it, but not so frequently that you are wasting money.”

After multiple lightning strikes and years out in the elements, lightning arrestors themselves can fail, creating a momentary short-circuit on the power grid. If that happens, a device built into the arrestors senses the problem and fires a tiny explosive charge that physically disconnects the faulty arrestor from the distribution system. NEETRAC has developed specialized laboratory testing procedures to evaluate the performance of these devices.

Helping the industry develop better equipment requires an understanding of lightning and how it works. For instance, though it’s generally not visible to the human eye, most lightning strikes in the Southeast are made up of between three and five separate pulses between 30 and 120 milliseconds apart, each one containing potentially damaging electrical energy.

In the Southeast, 90 percent of lightning has a negative charge. But positively-charged lightning also occurs, most often in the winter. Positive lightning ionizes the atmosphere more efficiently than negative lightning and can therefore travel longer distances.

“Positive lightning can travel 10 miles from the storm before striking an object on the ground, so the storm clouds may not even be visible when the lightning strikes,” said Ray Hill, a research technologist with NEETRAC. “This is the source of what people call a ‘bolt from the blue.’ Because it tends to be a single pulse, positive lightning can be more dangerous since all of the energy is in a single stroke – and people aren’t expecting it.”

Though NEETRAC’s lightning impulse generator can create explosive results, most testing at the center’s facilities is less dramatic.

For instance, salt fog chambers simulate long-term exposure in moist and corrosive environments to study how utility system components will withstand years of exposure to the elements.

Strong ultraviolet lights and high temperatures test the ability of rubber seals to withstand summertime heat and strong sunlight while keeping moisture away from sensitive components. Computer simulations developed by Sakis Meliopoulos, a member of the Georgia Tech electric power faculty, help determine the most efficient way to ground the electric grid, which provides the only effective way to control damaging current.

“The utility companies do a lot to keep lightning from damaging their systems, which helps keep the lights on,” Hill added. “When it comes down to that last bit of lightning protection for the service that comes into a home, consumers should consider additional surge protection, particularly for electronic equipment. But nothing is absolute – all you can really do with lightning protection is to get the odds in your favor.”


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Utilities: Protecting Electrical Equipment Against Lightning Damage." ScienceDaily. ScienceDaily, 17 February 2009. <www.sciencedaily.com/releases/2009/02/090205183620.htm>.
Georgia Institute of Technology. (2009, February 17). Utilities: Protecting Electrical Equipment Against Lightning Damage. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/02/090205183620.htm
Georgia Institute of Technology. "Utilities: Protecting Electrical Equipment Against Lightning Damage." ScienceDaily. www.sciencedaily.com/releases/2009/02/090205183620.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins