Featured Research

from universities, journals, and other organizations

Key Factor In Controlling Breakdown Of Bone Discovered

Date:
February 9, 2009
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
A new study demonstrates that a chemical mediator in the blood that influences immune cell migration also plays a key role in maintaining the balance between the build-up and breakdown of bones in the body. This mediator, which acts on cells that degrade bone, may provide a new target for scientists developing therapies and preventions for bone-degenerating diseases such as osteoporosis and rheumatoid arthritis.

A new study demonstrates that a chemical mediator in the blood that influences immune cell migration also plays a key role in maintaining the balance between the build-up and breakdown of bones in the body. This mediator, which acts on cells that degrade bone, may provide a new target for scientists developing therapies and preventions for bone-degenerating diseases such as osteoporosis and rheumatoid arthritis.

The study comes from the laboratory of immunologist Ronald Germain, M.D., Ph.D., at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. A report describing the project, conceived by Masaru Ishii, M.D., Ph.D., a visiting fellow from Osaka University in Japan, appears online in Nature.

Bone is a dynamic tissue, constantly undergoing growth and degradation. Bone degeneration, also known as bone resorption, is caused by specialized cells called osteoclasts. Immature osteoclasts circulate within the blood and migrate to the surface of the bones, where they mature and start to degrade the bone matrix. Osteoclasts are the only cells known to degrade bone.

Normally bone resorption is balanced by the activity of bone-forming cells, called osteoblasts. In people with bone-destructive disorders such as osteoporosis, however, osteoclast activity outpaces osteoblast activity, leading to a loss of bone density.

"Most current therapies for bone-degrading diseases target mature osteoclasts," says NIAID Director Anthony S. Fauci, M.D. "Understanding how immature osteoclasts are recruited to the bone in the first place and targeting the signals that control that migration represents a potential new approach to treating and preventing debilitating joint and bone diseases." In the United States, approximately 1.5 million fractures per year are attributed to the bone-weakening effects of osteoporosis.

As a rheumatologist who treats people with bone diseases, Dr. Ishii became interested in understanding what signals control immature osteoclast recruitment. He knew that cells can migrate to specific sites in the body in response to chemical mediators in the blood known as chemokines or chemoattractants. These molecules act like homing signals, telling cells that have certain receptors to move toward or away from certain tissues in the body.

Previously, Dr. Ishii had discovered that the chemoattractant sphingosine-1-phosphate (S1P), which is associated with the trafficking of immune cells into and out of the lymph nodes, also caused immature osteoclasts to mobilize.

"Because immature osteoclasts come from the same parent stem cell that gives rise to specific white blood cells already shown to respond to S1P," comments Dr. Ishii, "it seemed plausible that S1P could play a role in osteoclast migration."

Once at NIAID, Dr. Ishii worked with Dr. Germain's group to determine if S1P controlled immature osteoclast migration in live mice. Using a unique imaging technique, the researchers could see immature osteoclasts migrating away from the bones of the mice in response to S1P in the blood.

To confirm that S1P plays a direct role in bone metabolism, the research team compared the bone density in mice having the S1P receptor on their cells' surfaces with that of mice lacking the S1P receptor. They found that mice with functional S1P receptors had denser bones than mice lacking functional S1P receptors.

The researchers also tested a mouse model of postmenopausal osteoporosis to see if adding a synthetic S1P activator, known as FTY720, could help preserve bone. Postmenopausal mice given FTY720 had fewer immature osteoclasts on their bones and greater bone density when compared with untreated postmenopausal mice.

According to Dr. Ishii, these findings, combined with previous data, indicate that it may be possible to use combined therapies that target immature osteoclast migration and mature osteoclast function to treat and prevent bone-resorptive disorders.

"Observing that the S1P pathway plays a role in osteoclast migration is a good demonstration of 'osteoimmunology,' where the research disciplines of immunology and bone metabolism intersect," notes Dr. Germain.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Ishii et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature, Feb 8, 2009 DOI: 10.1038/nature07713.3d

Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Key Factor In Controlling Breakdown Of Bone Discovered." ScienceDaily. ScienceDaily, 9 February 2009. <www.sciencedaily.com/releases/2009/02/090208133139.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2009, February 9). Key Factor In Controlling Breakdown Of Bone Discovered. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/02/090208133139.htm
NIH/National Institute of Allergy and Infectious Diseases. "Key Factor In Controlling Breakdown Of Bone Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/02/090208133139.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins