Featured Research

from universities, journals, and other organizations

Novel Quantum Effect, Quantum Spin Hall Effect, Directly Observed And Explained

Date:
February 13, 2009
Source:
Helmholtz Association of German Research Centres
Summary:
Physicists has succeeded in gaining an in-depth insight into a most unusual phenomenon. They succeeded for the first time in directly measuring the spin of electrons in a material that exhibits the quantum spin Hall effect, which was theoretically predicted in 2004 and first observed in 2007. Astonishingly, the spin currents flow without any external stimulus as a result of the internal structure of the material. The electrons mimic the presence of a magnetic field.

Energy, momentum and spin distribution of the electronic states on the surface of antimony. An indication of the occurrence of the quantum spin Hall effect is when states with this spin structure (red/blue) link the valency and conduction band.
Credit: Forschungszentrum Jόlich

An international research team has succeeded in gaining an in-depth insight into an unusual phenomenon. The researchers succeeded for the first time in directly measuring the spin of electrons in a material that exhibits the quantum spin Hall effect, which was theoretically predicted in 2004 and first observed in 2007.

Related Articles


Astonishingly, the spin currents flow without any external stimulus as a result of the internal structure of the material. The flow of information is loss-free, even for slight irregularities. This paves the way towards fault-tolerant quantum computers and towards a source of spin currents.

The spin is a quantum-mechanical property of elementary particles and as a rule it occurs in two variations. This is what makes it suitable for use as a binary information carrier. In hard disk drives, for example, spins are already being used to store digital information.

In 2007, physicists from Germany and the USA observed a new phenomenon that could make it possible to transport and electrically manipulate information in future storage media almost loss-free – the quantum spin Hall effect. The discovery was hailed by the journal Science as one of the ten most important scientific breakthroughs of 2007.

The first study that succeeded in directly observing the spin of flowing particles was published February 13 in Science by an international research team, which included Dr. Gustav Bihlmayer from Forschungszentrum Jόlich, member of the Helmholtz Association. Until now, the quantum spin Hall effect could only be indirectly proven.

"We were able to show for the first time that two spin currents flow in opposite directions in the edge region of an alloy of bismuth and antimony. An external energy supply is not required; losses cannot occur," explained Dr. Gustav Bihlmayer from the Jόlich Institute of Solid State Research. The causes of this astonishing phenomenon are interactions within the material. Of particular interest to materials scientists is the fact that imperfections in the material do not impair the spin currents. "This means that materials known as topological materials have spin currents that can be manipulated electrically and are therefore suitable for use as spin sources. They could even pave the way towards fault-tolerant quantum computers," said Bihlmayer. "Our process will make it possible to test the suitability of materials for this purpose in the future."

The current study makes use of theoretical calculations and photoelectron spectroscopy. The photons in a synchrotron beam cause electrons to be emitted from the material surface. The energy and momentum distribution, as well as the spin of the particles, can be used to derive concrete information on the occurrence of the quantum spin Hall effect. Previous methods were based on measurements of the conductivity in the materials at variable voltages.

Spins for data processing

Spins are a hot topic in research. Physicists and nanoelectricians have high hopes for what is known as spin electronics. Spin electronics does not just exploit the electric charge of electrons and nuclei but also their spin, and should therefore lead to the development of new approaches for the processing and coding of information in information processing.

Faster, smaller and more energy-efficient computers could thus become a reality, as could completely new components capable of performing a number of different functions such as storage, logic and communication. One of the most prominent ideas is that of the quantum computer. For spin-electronic concepts, scientists conducting basic research are desperately searching for new materials and phenomena that will make it possible to control both spin orientation and spin flow.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, F. Meier, J. Osterwalder, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava, M.Z. Hasan. Observation of unconventional quantum spin textures in topologically ordered materials. Science, 13 February 2009; vol. 323, issue 5916

Cite This Page:

Helmholtz Association of German Research Centres. "Novel Quantum Effect, Quantum Spin Hall Effect, Directly Observed And Explained." ScienceDaily. ScienceDaily, 13 February 2009. <www.sciencedaily.com/releases/2009/02/090212141248.htm>.
Helmholtz Association of German Research Centres. (2009, February 13). Novel Quantum Effect, Quantum Spin Hall Effect, Directly Observed And Explained. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2009/02/090212141248.htm
Helmholtz Association of German Research Centres. "Novel Quantum Effect, Quantum Spin Hall Effect, Directly Observed And Explained." ScienceDaily. www.sciencedaily.com/releases/2009/02/090212141248.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) — British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) — A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins