Featured Research

from universities, journals, and other organizations

Sophisticated Molecule Plays Role In Fertility, Blood Pressure, Digestion, Mental Health

Date:
February 27, 2009
Source:
Biotechnology and Biological Sciences Research Council
Summary:
Scientists have discovered the secrets of a sophisticated molecule that plays a role in many aspects of human health from fertility to blood pressure; digestion to mental health. This has opened up the potential for discovery of new drugs to treat an enormous variety of conditions. The team shows how the IP3 receptor arranges itself into clusters to help broadcast vital chemical messages around cells in the form of calcium.

Scientists have discovered the secrets of a sophisticated molecule that plays a role in many aspects of human health from fertility to blood pressure; digestion to mental health. This has opened up the potential for discovery of new drugs to treat an enormous variety of conditions.

In research supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust a team from the University of Cambridge shows how a molecule – the IP3 receptor – arranges itself into clusters to help broadcast vital chemical messages around cells in the form of calcium.

Team leader, Professor Colin Taylor said: "Almost everything a cell does is regulated by calcium, and we know there are many diseases in both humans and animals, such as stroke or an irregular heart beat, in which calcium regulation goes wrong. But the real puzzle is trying to understand how calcium – which is amongst the simplest of all chemicals – can manage to control lots of different things at the same time. What we have found is a crucial part of that puzzle.

"Imagine you're trying to find a dancing partner at a party. You might whisper the request to several people, or you might shout it out to everyone. Some of your handful of whispered requests might be ignored and some may have you heading for the dance floor. If you shout loud enough, everyone gets to decide whether to respond. It's rather similar with messages transmitted by calcium signals: they can evoke very different responses in cells depending on whether they are whispered or shouted."

The research published today shows that when cells are stimulated, their IP3 receptors receive instructions telling them to both gather into clusters and to open and allow calcium to pass. Furthermore, IP3 receptors behave very differently when they are alone as opposed to clustered, and these differences help determine whether the calcium signal is "whispered" or "shouted".

Professor Taylor continued: "The IP3 receptors that we work on are interesting because we've found that they can both whisper and shout. Lone IP3 receptors whisper, but when they get together they can shout – not just because their combined effort is bigger, but because the calcium they release stimulates their neighbours to release calcium as well.

"We need to understand fully how IP3 receptors work if we are to begin to think of them as future targets for drugs. The clustering that we have observed fills an important gap in this understanding and takes us a step closer to being able to design drugs for a number of important diseases where we know calcium regulation goes wrong."

Professor Janet Allen, Director of Research, BBSRC said: "There is still an awful lot we don't know about the way healthy humans work. Until we get to the bottom of how complex biological processes work, what it is about them that maintains health, and where the potential points of intervention might be when things go wrong, there will be many diseases that we will not be able to treat effectively. It is reassuring to see fundamental work going on that can deliver answers to these questions. We are delighted that Professor Taylor's group have been recognised for their achievements in this area and congratulate them on publication of their Nature paper."


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council. Note: Materials may be edited for content and length.


Journal Reference:

  1. Taufiq-Ur-Rahman et al. Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2. Nature, 2009; DOI: 10.1038/nature07763

Cite This Page:

Biotechnology and Biological Sciences Research Council. "Sophisticated Molecule Plays Role In Fertility, Blood Pressure, Digestion, Mental Health." ScienceDaily. ScienceDaily, 27 February 2009. <www.sciencedaily.com/releases/2009/02/090225132231.htm>.
Biotechnology and Biological Sciences Research Council. (2009, February 27). Sophisticated Molecule Plays Role In Fertility, Blood Pressure, Digestion, Mental Health. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2009/02/090225132231.htm
Biotechnology and Biological Sciences Research Council. "Sophisticated Molecule Plays Role In Fertility, Blood Pressure, Digestion, Mental Health." ScienceDaily. www.sciencedaily.com/releases/2009/02/090225132231.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins