Featured Research

from universities, journals, and other organizations

Scientists Expose 'Buried' Fault That Caused Deadly 2003 Quake In Bam, Iran

Date:
March 5, 2009
Source:
NASA/Jet Propulsion Laboratory
Summary:
Using satellite radar data, NASA-funded scientists have observed, for the first time, the healing of subtle, natural surface scars from an earthquake that occurred on a "buried" fault several miles below the surface-a fault whose fractures are not easily observed at Earth's surface.

Three-dimensional perspective view of vertical displacement of the land surface south of Bam, Iran during the three and a half years after the December 26, 2003 earthquake derived from analysis of radar images. Blue and magenta colors show where the ground surface moved downward; yellow and red colors show upward motion. Displacements are superimposed on a false-color Landsat Thematic Mapper image taken on October 1, 1999 of the area. Vegetation in the city of Bam is green and stone-covered desert has various tones of gray.
Credit: Image courtesy of NASA/Jet Propulsion Laboratory

Using satellite radar data, NASA-funded scientists have observed, for the first time, the healing of subtle, natural surface scars from an earthquake that occurred on a "buried" fault several miles below the surface-a fault whose fractures are not easily observed at Earth's surface.

Related Articles


Reporting in the March 5 issue of Nature, geophysicist Eric Fielding of NASA's Jet Propulsion Laboratory in Pasadena, Calif., describes how so-called "buried" faults are not so hidden after all. Using the magnitude 6.6 earthquake that devastated Bam, Iran, in 2003 as a case study, Fielding and his university colleagues analyzed radar images from the European Space Agency's Envisat satellite to study the land surface above a fault that is buried about 1 kilometer (half a mile) under Earth's surface. They discovered a shallow, narrow surface depression that formed and evolved after the quake, which killed more than 30,000 people.

The results have implications for assessing the risk of future earthquakes associated with known buried faults, which can be found around the world but are often missed by geologists or assumed not to be active. Buried faults are thought to be responsible for the major 1992 Landers and 1999 Hector Mine earthquakes in Southern California.

Previous seismic and satellite studies showed that the fault under Bam had slipped by about 2 to 3 meters (6.6 to 9.8 feet) at the time of the earthquake. But when scientists from Iran went out in the field after the earthquake, the cracks they found at the surface only showed 25 centimeters (9.8 inches) of slip or less. If indeed there had been 2 to 3 meters of slip at depth, the surface must have somehow absorbed that slip.

Fielding and colleagues suspected the fault zone below could reveal itself in a slight deformation of Earth's surface because the pressure and stress during an earthquake causes rocks in the fault zone to expand and become more porous. After the quake, the ground will "heal" over a period of years, settling and forming a depression.

To investigate the extent and rate of surface deformation after the 2003 earthquake, the researchers turned to the Advanced Synthetic Aperture Radar instrument on Envisat. Researchers use images from that instrument to precisely measure elevation by bouncing a beam of microwave radiation off Earth's surface and observing the reflection back to the satellite. Fielding and colleagues then compared images from the 3.5 years following the Bam quake to see how the surface elevation changed, using a technique known as interferometric synthetic aperture radar, or InSAR.

"The advantage of InSAR is that you get a map of the pattern," said Fielding, "whereas a single surveying station on the ground would just reveal that something funny was going on at one place."

Indeed, InSAR revealed a shallow, ditch-like depression on the surface -- measuring between 200 to 400 meters (219 to 437 yards) wide and about 3 centimeters (1.2 inches) deep -- directly above the ruptured fault. "Using InSAR, we know that the deformation and the earthquake are associated," he said. “The depression deepened for at least 3.5 years after the earthquake.”

The team also modeled the sinking throughout the fault zone, using a model that is normally used to study crustal compaction and expansion around volcanoes. By analyzing an array of points along the fault to estimate how compaction produced the features at the surface, the researchers concluded that the 2 to 3 meters of slip at depth was absorbed by a "damage zone," close to Earth's surface. This means that the earthquake slip was spread over a wide volume of rock in the surface layers instead of a single fault.

"There's a big, crushed-up mass of the rock that absorbs this slip that occurred at depth, and it is only visible at the surface as a subtle deformation after the earthquake," Fielding said.

The study is helping the researchers anticipate the future behavior of the fault. Initially, they were concerned that if stress at depth was not relieved at the surface, then a subsequent earthquake could result. Because the rupture's stress was absorbed in the damage zone, the researchers believe the fault that shook Bam in 2003 is no longer a risk.

"There's always the chance that a nearby, related fault could rupture, as eastern Iran is full of faults that are active at some scale," Fielding said. "But this one beneath Bam is the type that ruptures every 2,000 years or longer, and the stress on it seems to have been relieved."

Other researchers on the study include Paul Lundgren of JPL; Roland Bürgmann of the University of California, Berkeley; and Gareth Funning of the University of California, Riverside.

NASA is studying designs for a future Earth observation mission called Deformation, Ecosystem Structure and Dynamics of Ice. A key objective of the mission would be to enable InSAR measurements of deformation on fault zones around the world to better understand the processes that cause earthquakes.

JPL is managed for NASA by the California Institute of Technology in Pasadena.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Scientists Expose 'Buried' Fault That Caused Deadly 2003 Quake In Bam, Iran." ScienceDaily. ScienceDaily, 5 March 2009. <www.sciencedaily.com/releases/2009/03/090305085754.htm>.
NASA/Jet Propulsion Laboratory. (2009, March 5). Scientists Expose 'Buried' Fault That Caused Deadly 2003 Quake In Bam, Iran. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2009/03/090305085754.htm
NASA/Jet Propulsion Laboratory. "Scientists Expose 'Buried' Fault That Caused Deadly 2003 Quake In Bam, Iran." ScienceDaily. www.sciencedaily.com/releases/2009/03/090305085754.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Keurig Co-Founder Says Company Has A Waste Problem

Keurig Co-Founder Says Company Has A Waste Problem

Newsy (Mar. 5, 2015) — Keurig co-founder John Sylvan told The Atlantic he doesn&apos;t even own a Keurig because they&apos;re too expensive and produce too much waste. Video provided by Newsy
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) — Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com
Raw: Injured Miners Treated After Blast

Raw: Injured Miners Treated After Blast

AP (Mar. 4, 2015) — An explosion ripped through a coal mine before dawn Wednesday in war-torn eastern Ukraine, killing at least one miner, officials said. Graphic video of injured miners being treated in a Donetsk hospital. (March 4) Video provided by AP
Powered by NewsLook.com
Australian Museum Shares Terrifying Goblin Shark With the World

Australian Museum Shares Terrifying Goblin Shark With the World

Buzz60 (Mar. 4, 2015) — The Australian Museum has taken in its fourth-ever goblin shark, a rare fish with an electricity-sensing snout and &apos;alien-like&apos; jaw. Mike Janela (@mikejanela) takes a look. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins