Featured Research

from universities, journals, and other organizations

Galactic Dust Bunnies Found To Contain Carbon After All

Date:
March 17, 2009
Source:
NASA
Summary:
Stars rich in carbon complex molecules may form at the center of our Milky Way galaxy. This discovery is significant because it adds to our knowledge of how stars form heavy elements -- like oxygen, carbon and iron -- and then blow them out across the universe, making it possible for life to develop.

The "Cat's Eye" nebula, or NGC 6543, is a well-studied example of a "planetary nebula." Such objects are the glowing remnants of dust and gas expelled from moderate-sized stars during their last stages of life. Our own sun will generate such a nebula in about five billion years.
Credit: Image courtesy of NASA

Using NASA's Spitzer Space Telescope, researchers have found evidence suggesting that stars rich in carbon complex molecules may form at the center of our Milky Way galaxy.

Related Articles


This discovery is significant because it adds to our knowledge of how stars form heavy elements -- like oxygen, carbon and iron -- and then blow them out across the universe, making it possible for life to develop.

Astronomers have long been baffled by a strange phenomenon: Why have their telescopes never detected carbon-rich stars at the center of our galaxy even though they have found these stars in other places? Now, by using Spitzer's powerful infrared detectors, a research team has found the elusive carbon stars in the galactic center.

"The dust surrounding the stars emits very strongly at infrared wavelengths," says Pedro García-Lario, a research team member who is on the faculty of the European Space Astronomy Center, the European Space Agency's center for space science. He co-authored a paper on this subject in the February 2009 issue of the journal Astronomy & Astrophysics.

"With the help of Spitzer spectra, we can easily determine whether the material returned by the stars to the interstellar medium is oxygen-rich or carbon-rich."

The team of scientists analyzed the light emitted from 40 planetary nebulae – blobs of dust and gas surrounding stars -- using Spitzer's infrared spectrograph. They analyzed 26 nebulae toward the center of the Milky Way -- a region called the "Galactic Bulge" -- and 14 nebulae in other parts of the galaxy. The scientists found a large amount of crystalline silicates and polycyclic aromatic hydrocarbons, two substances that indicate the presence of oxygen and carbon.

This combination is unusual. In the Milky Way, dust that combines both oxygen and carbon is rare and is usually only found surrounding a binary system of stars. The research team, however, found that the presence of the carbon-oxygen dust in the Galactic Bulge seems to be suggestive of a recent change of chemistry experienced by the star.

The scientists hypothesize that as the central star of a planetary nebula ages and dies, its heavier elements do not make their way to the star's outer layers, as they do in other stars. Only in the last moments of the central star's life, when it expands and then violently expels almost all of its remaining outer gasses, does the carbon become detectable. That's when astronomers see it in the nebula surrounding the star.

"The carbon produced through these recurrent 'thermal pulses' is very inefficiently dredged up to the surface of the star, contrary to what is observed in low-metallicity, galactic disk stars," said García-Lario. "It only becomes visible when the star is about to die." This study supports a hypothesis about why the carbon in some stars does not make its way to the stars' surfaces. Scientists believe that small stars -- those with masses up to one-and-a-half times that of our sun -- that contain lots of metal do not bring carbon to their surfaces as they age. Stars in the Galactic Bulge tend to have more metals than other stars, so the Spitzer data support this commonly held hypothesis. Before the Spitzer study, this hypothesis had never been supported by observation.

This aging and expelling process is typical of all stars. As stars age and die, they burn progressively heavier and heavier elements, beginning with hydrogen and ending with iron. Towards the end of their lives, some stars become what are called "red giants." These dying stars swell so large that if one of them were placed in our solar system, where the sun is now, its outermost border would touch Earth's orbit. As these stars pulsate – losing mass in the process – and then contract, they spew out almost all of their heavier elements. These elements are the building blocks of all planets, including our own Earth (as well as of human beings and any other life forms that may exist in the universe).

The paper is co-authored by José Vicente Perea-Calderón of the European Space Astronomy Center in Villanueva de la Cañada, Spain; Domingo Anibal García-Hernández of the Instituto de Astrofísica de Canarias, on Spain's Tenerife island; Ryszard Szczerba of the Nicolaus Copernicus Astronomical Center in Torun, Poland; and Matt Bobrowsky of the University of Maryland, College Park.


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Cite This Page:

NASA. "Galactic Dust Bunnies Found To Contain Carbon After All." ScienceDaily. ScienceDaily, 17 March 2009. <www.sciencedaily.com/releases/2009/03/090316143831.htm>.
NASA. (2009, March 17). Galactic Dust Bunnies Found To Contain Carbon After All. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/03/090316143831.htm
NASA. "Galactic Dust Bunnies Found To Contain Carbon After All." ScienceDaily. www.sciencedaily.com/releases/2009/03/090316143831.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) — Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins