Featured Research

from universities, journals, and other organizations

Breakthrough In Chemical Separation Captures Fluorocarbons Dynamically

Date:
March 22, 2009
Source:
University of Jyvaeskylae
Summary:
Scientists have made a breakthrough in chemical separation. The new chemical separations using porous solids mostly rely on size selection, meaning that compounds too large to squeeze through the pores are excluded. The work by the research group describes a class of ionic solids that can selectively capture certain fluorocarbons dynamically.

A breakthrough in chemical separation made by a joint research team of the Politecnico di Milano (Technical University of Milan) and the University of Jyvδskylδ was published in the latest issue of Science.

The chemical separations using porous solids mostly rely on size selection, meaning that  compounds too large to squeeze through the pores are excluded. The work by the research group describes a class of ionic solids that can selectively capture certain fluorocarbons dynamically.

The crystals comprise dicationic hydrocarbon chains capped at each end by positive ammonium groups, with negative iodide ions to balance the charge.

Although structurally nonporous, the solids spontaneously stretch to accommodate iodine-capped fluorocarbon chains, which form robust intermolecular halogen bonds with iodides at each end. In other words, the solids used behave like a sponge that can absorb a specific molecule. This encapsulation is highly selective for the fluorocarbon, with a chain length scaled to the lattice dication. Moreover, the process is reversible, with the guests liberated by heating, offering potential for use in industrial fluorocarbon separations.

The members of the team are Professor Kari Rissanen and Adjunct Professor Manu Lahtinen from JYU, and Professors Pierangelo Metrangolo and Giuseppe Resnati from the Politecnico di Milano.

 


Story Source:

The above story is based on materials provided by University of Jyvaeskylae. Note: Materials may be edited for content and length.


Journal Reference:

  1. Metrangolo et al. Nonporous Organic Solids Capable of Dynamically Resolving Mixtures of Diiodoperfluoroalkanes. Science, 2009; 323 (5920): 1461 DOI: 10.1126/science.1168679

Cite This Page:

University of Jyvaeskylae. "Breakthrough In Chemical Separation Captures Fluorocarbons Dynamically." ScienceDaily. ScienceDaily, 22 March 2009. <www.sciencedaily.com/releases/2009/03/090317094849.htm>.
University of Jyvaeskylae. (2009, March 22). Breakthrough In Chemical Separation Captures Fluorocarbons Dynamically. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/03/090317094849.htm
University of Jyvaeskylae. "Breakthrough In Chemical Separation Captures Fluorocarbons Dynamically." ScienceDaily. www.sciencedaily.com/releases/2009/03/090317094849.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins