Featured Research

from universities, journals, and other organizations

Engineer Devises Ways To Improve Gas Mileage

Date:
March 18, 2009
Source:
Washington University in St. Louis
Summary:
A mechanical engineer is developing techniques that will lessen our monetary pain at the pump by reducing the drag of vehicles. Drag is an aerodynamic force that is the result of resistance a body encounters when it moves in a liquid or gaseous medium (such as air). Reduction in drag means less fuel would be required to overcome the fluid resistance encountered by the moving vehicle.

Last summer, it was very expensive to fill up a gas tank when the gasoline price hit close to four dollars a gallon. Transportation by road or air consumes fuel, which not only increases our vulnerability to foreign imports but also is a source of greenhouse gas emissions that will impact adverse change in climate and global warming.

A mechanical engineer at Washington University in St. Louis is developing techniques that will lessen our monetary pain at the pump by reducing the drag of vehicles — planes, autos and trucks. Drag is an aerodynamic force that is the result of resistance a body encounters when it moves in a liquid or gaseous medium (such as air). Reduction in drag means less fuel would be required to overcome the fluid resistance encountered by the moving vehicle.

Working with undergraduate and graduate students, Ramesh K. Agarwal, Ph.D, the William Palm Professor of Engineering at Washington University in St. Louis, has successfully demonstrated that the drag of airplane wings and cars/trucks can be reduced by employing the active flow control (AFC) technology. The idea behind the AFC is to deploy actuators on the surface of these vehicles to modify the flow in a way that the overall resistance is reduced. Using computational fluid dynamics software, Agarwal has found that the actuators modify the flow, which results in drag reduction, which in turn reduces the fuel amount needed.

"The most promising actuators are the so called synthetic jet or oscillatory jet actuators which are embedded in the surface of the body (an airplane wing for example), and essentially perform injection and suction of the fluid from the surface in a periodic manner," said Agarwal. He has demonstrated that the transonic drag of an airplane wing can be reduced by 12 to 15 percent with the incorporation of three-ounce actuators, about 20 to 30 spaced optimally on the surface of the wing.

"We use the genetic algorithms and artificial neural net algorithms to optimize the placement of actuators." Agarwal said. His students have recently applied the concept on cars and trucks and have achieved 15 to 18 percent reduction in drag by placing the actuators on the back surface of these vehicles. Although the technology has not yet been deployed on any commercially available vehicle, it is being researched and investigated by airplane and automobile companies worldwide.

"There are approximately 100 million cars and trucks on the road in the United States alone and hundreds of millions more worldwide. Similarly there will be a substantial increase in air transportation worldwide. The AFC technology can therefore play an important role in fuel conservation and reduction of greenhouse gas emissions," said Agarwal, one of the most decorated engineers in the United States and a fellow of ten national science and engineering societies including the American Association for Advancement of Science, American Physical Society, American Society of Mechanical Engineers (ASME), American Institute of Aeronautics and Astronautics (AIAA) and the Institute of Electrical and Electronics Engineers.

Agarwal will receive the James B. Eads Award from the Academy of Science of St. Louis on April 30, 2009. It is the latest of several distinguished awards he has received in just the past three years. An internationally renowned scholar who is considered a leading authority in aerodynamics and computational fluid dynamics, he has been the recipient of almost all the major national and international awards in these fields.

In 2007, he received the Gold Award from the Royal Aeronautical Society of U.K., an award given to fewer than five Americans in more than fifty years. In 2008, he received the "Aerodynamics Award" for outstanding contributions to Aerodynamics; it is the highest national award given by the AIAA in Aerodynamics. In 2008, he was also the recipient of William Littlewood Award given jointly by AIAA and SAE (Society of Automotive Engineers). Established in 1971, the award has only been given twice to a member of academia including Agarwal. It is normally given to CEOs and senior executives of aerospace companies worldwide. He received the "Fluids Engineering Award" in 2001 from ASME; the highest national technical award given by ASME in fluid dynamics.

Agarwal is also working for the United States Air Force on development of techniques to predict heat transfer and to design improved thermal protection systems for the next generation of space access vehicles.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Engineer Devises Ways To Improve Gas Mileage." ScienceDaily. ScienceDaily, 18 March 2009. <www.sciencedaily.com/releases/2009/03/090317125230.htm>.
Washington University in St. Louis. (2009, March 18). Engineer Devises Ways To Improve Gas Mileage. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2009/03/090317125230.htm
Washington University in St. Louis. "Engineer Devises Ways To Improve Gas Mileage." ScienceDaily. www.sciencedaily.com/releases/2009/03/090317125230.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins