Featured Research

from universities, journals, and other organizations

Quantum Effect May Hold Promise For Low-cost DNA Sequencing, Sensor Applications

Date:
March 30, 2009
Source:
Arizona State University
Summary:
A ghostly property of matter, called quantum tunneling, may aid the quest for accurate, low-cost genomic sequencing, according to a new article.

A gold probe, outfitted with a dangling nucleotide approaches its complementary base, protruding upward from a monolayer. A set point current is established for the tunnel junction as the bases self-assemble. As the electrode is slowly withdrawn, the drop in tunneling current is recorded. Examining the curve of current vs. distance allows the identification of A-T base pairs, which may be distinguished from more strongly bonded C-G pairs -- cemented by 3 rather than 2 hydrogen bonds.
Credit: Biodesign Institute at ASU

A ghostly property of matter, called quantum tunneling, may aid the quest for accurate, low-cost genomic sequencing, according to a new paper in Nature Nanotechnology Letters by Stuart Lindsay and his collaborators at the Biodesign Institute of Arizona State University. Tunneling implies that a particle, say an electron, can cross a barrier, when, according to classical physics, it does not have enough energy to do so.

Unraveling the DNA sequences of the human genome a decade ago was a remarkable achievement. Today, the task of sequencing some 3 billion chemical base pairs of the genome—enough information to fill a 20-volume encyclopedia—remains a daunting challenge, thus far accomplished largely through brute force means. Such methods are typically slow and extravagantly expensive, (though costs have dropped considerably from the initial sequencing of the human genome, which took 11 years at a cost of $1 billion.)

Bringing the power of DNA sequencing to every individual will require new, affordable technologies to help mine the wealth of information DNA can provide concerning morphology, hereditary traits and predisposition to disease.

Various techniques for sequencing DNA have been used to determine the identities of the four nucleotide bases—adenine, thymine, cytosine and guanine—which make up the ladder rungs of the DNA's double helical structure. Most of these require snipping DNA into hundreds of thousands of short fragments, unzipping the helix and reading a few hundred to a few thousand bases at a time. Finally, all of the information from the DNA pieces is reassembled into a picture of the complete genome, with the help of massive computing power.

ASU Regents' Professor and Carson Presidential Chair of Physics and Chemistry, Stuart Lindsay, who also directs the Biodesign Institute's Center for Single Molecule Biophysics, summarizes one of the chief physical obstacles to more efficient identification of DNA base pairs through techniques like optical microscopy: "The difficulty is that any physical readout that you can think of placing on a device is sensitive on a length scale that is longer than the separation between bases."

Lindsay believes there may be a radical solution.

The rules of attraction

Dr. Lindsay's technique for observing DNA sequences relies on devices known as scanning tunneling- (STM) and atomic force- (ATM) microscopes. He exploits these sensitive instruments to identify complementary DNA base pairs, evaluating the hydrogen bonds formed between them. Base pairing rules for DNA dictate that the hydrogen bonds work to join up appropriate nucleotide pairs like jigsaw pieces—adenine with thymine and cytosine with guanine.

The scanning tunneling microscope used in the present study features a delicate electrode tip held very close to the DNA sample. When this tip is fitted with a particular nucleotide and brought in contact with its complementary mate—embedded in the substrate, the hydrogen bonds stick the bases together and they attach, like tiny magnets. As Lindsay describes the method, " you have sensing chemicals attached to one electrode and the target you want to sense attached to another one. When the junction spontaneously self-assembles, you get a signal. It's a new way of doing recognition at the atomic scale."

Crucial to the new technique is the fact that the strength of the glue fastening complementary bases differs for A-T and C-G pairs. While two hydrogen bonds hold A-T bases together, C-G pairs use three hydrogen bonds. For this reason, it's physically harder to break C-G bonds. By measuring the current drop in the electrical circuit formed between the microscope probe and the substrate as the hydrogen bonds are gently pulled apart, a positive identification of the base being read can be made. The new method, as Lindsay explains, combines chemical recognition—the hydrogen bonded assembly at the tunnel junction— with the flow of electron tunneling current as the tunneling junction is completed.

The study made a number of measurements using varying amounts of electrical current through the junction, as the microscope's electrode is moved away from the substrate and the hydrogen bonds uniting base pairs are slowly pulled apart. "What you can see straight away," Lindsay notes, "is that with the bases held together by 3 hydrogen bonds, the curves of falling current go on for a long distance. In those held together with two, they go on for less distance."

Bridging the divide

Electron tunneling is a peculiar property of matter acting over tiny distances at the atomic or subatomic scale. In a classical electric circuit, a gate is either open or closed, permitting or blocking the flow of current. But, as Lindsay explains, "when you start to get two electrodes so close to one another that they are within a few atomic diameters, then the electrons can actually leak from one electrode to the other, because in quantum mechanics, they're not confined." These electrons, which violate classical mechanics as they hop across the tiny junction, are said to "tunnel."

Now, Lindsay's research team has developed a method to identify different DNA base pairs, which could serve as the foundation for a new DNA sequencing technology. "The tunnel current is there as a readout of how long that molecular pair survived in the junction, " Lindsay says. "But it turns out that it's an incredibly nice way of identifying which molecular pair it was." Although quantum tunneling seems exotic, Lindsay points out that the routine leaking of electrons from one atom to another to form a chemical bond is a similar process.

If significant challenges to reading single molecules through such a technique can be overcome, the method holds the potential for inexpensive DNA sequencing, operating at the breakneck pace of thousands of base pairs per second. As professor Lindsay notes, "this combination of tunneling plus the chemistry is very powerful."


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Quantum Effect May Hold Promise For Low-cost DNA Sequencing, Sensor Applications." ScienceDaily. ScienceDaily, 30 March 2009. <www.sciencedaily.com/releases/2009/03/090322154420.htm>.
Arizona State University. (2009, March 30). Quantum Effect May Hold Promise For Low-cost DNA Sequencing, Sensor Applications. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/03/090322154420.htm
Arizona State University. "Quantum Effect May Hold Promise For Low-cost DNA Sequencing, Sensor Applications." ScienceDaily. www.sciencedaily.com/releases/2009/03/090322154420.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins