Featured Research

from universities, journals, and other organizations

Insight Into The Way Nicotine Works In The Brain

Date:
March 29, 2009
Source:
California Institute of Technology
Summary:
A tiny genetic mutation is the key to understanding why nicotine -- which binds to brain receptors with such addictive potency -- is virtually powerless in muscle cells that are studded with the same type of receptor.

This molecular model shows nicotine (in center) binding to a brain receptor via a cation-ΐ interaction.
Credit: Caltech/Dennis Dougherty

A tiny genetic mutation is the key to understanding why nicotine--which binds to brain receptors with such addictive potency--is virtually powerless in muscle cells that are studded with the same type of receptor. That's according to California Institute of Technology (Caltech) researchers, who report their findings in the journal Nature.

Related Articles


By all rights, nicotine ought to paralyze or even kill us, explains Dennis Dougherty, the George Grant Hoag Professor of Chemistry at Caltech and one of the leaders of the research team. After all, the receptor it binds to in the brain's neurons--a type of acetylcholine receptor, which also binds the neurotransmitter acetylcholine--is found in large numbers in muscle cells. Were nicotine to bind with those cells, it would cause muscles to contract with such force that the response would likely prove lethal.

Obviously, considering the data on smoking, that is not what happens. The question has long been: Why not?

"It's a chemical mystery," Dougherty admits. "We knew something subtle had to be going on here, but we didn't know exactly what."

That subtlety, it turns out, lies in the slight tweaking of the structure of the acetylcholine receptor in muscle cells versus its structure in brain cells.

The shape of the acetylcholine receptor, and the way the chemicals that bind with it contort themselves to fit into that receptor, is determined by a number of different weak chemical interactions. Perhaps most important is an interaction that Dougherty calls "underappreciated"--the cation-π interaction, in which a positively charged ion and an electron-rich π system come together.

Back in the late 1990s, Dougherty and colleagues had shown that the cation-π interaction is indeed a key part of acetylcholine's ability to bind to the acetylcholine receptors in muscles. "We assumed that nicotine's charge would cause it to do the same thing, to have the same sort of strong interaction that acetylcholine has," says Dougherty. "But we found that it didn't."

This would explain why smoking doesn't paralyze us; if the nicotine can't get into the muscle's acetylcholine receptors, it can't cause the muscles to contract.

But how, then, does nicotine work its addictive magic on the brain?

It took another decade for the scientists to be able to peek at what happens in brain cells' acetylcholine receptors when nicotine arrives on the scene. Turns out that in brain cells, unlike in muscle cells, nicotine makes the exact same kind of strong cation-π interaction that acetylcholine makes in both brain and muscle cells.

"In addition," Dougherty notes, "we found that nicotine makes a strong hydrogen bond in the brain's acetylcholine receptors. This same hydrogen bond, in the receptors in muscle cells, is weak."

The cause of this difference in binding potency, says Dougherty, is a single point mutation that occurs in the receptor near the key tryptophan amino acid that makes the cation-π interaction. "This one mutation means that, in the brain, nicotine can cozy up to this one particular tryptophan much more closely than it can in muscle cells," he explains. "And that is what allows the nicotine to make the strong cation-π interaction."

Dougherty says the best way to visualize this change is to think of the receptor as a box with one open side. "In muscle cells, this box is slightly distorted, so that the nicotine can't get to the tryptophan," he says. "But in the brain, the box is subtly reshaped. That's the thing: It's the shape, not the composition, of the box that changes. This allows the nicotine to make strong interactions, to become very potent. In other words, it's what allows nicotine to be addictive in the brain."

"Several projects in our labs are converging on the molecular and cellular mechanisms of the changes that occur when the brain is repeatedly exposed to nicotine," adds study coauthor Henry Lester, the Bren Professor of Biology at Caltech. "We think that the important events begin with the rather tight and selective interaction between nicotine and certain receptors in the brain. This Nature paper teaches us how this interaction occurs, at an unprecedented level of resolution."

Dougherty notes that these findings might one day lead to better drugs to combat nicotine addiction and other neurological disorders. "The receptor we describe in this paper is an important drug target," he says. "It might help pharmaceutical companies develop a better drug than nicotine to do the good things nicotine does--enhance cognition, increase attention--without being addictive and toxic."

The research was supported by the National Institutes of Health and the California Tobacco-Related Disease Research Program of the University of California. In addition to Dougherty and Lester, the paper's coauthors include Xinan Xiu, a former Caltech graduate student, and current graduate students Nyssa Puskar and Jai Shanata. Shanata's work on this research was partially supported by a National Research Service Award training grant.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiu et al. Nicotine binding to brain receptors requires a strong cation–π interaction. Nature, March 26, 2009; DOI: 10.1038/nature07768

Cite This Page:

California Institute of Technology. "Insight Into The Way Nicotine Works In The Brain." ScienceDaily. ScienceDaily, 29 March 2009. <www.sciencedaily.com/releases/2009/03/090323161121.htm>.
California Institute of Technology. (2009, March 29). Insight Into The Way Nicotine Works In The Brain. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2009/03/090323161121.htm
California Institute of Technology. "Insight Into The Way Nicotine Works In The Brain." ScienceDaily. www.sciencedaily.com/releases/2009/03/090323161121.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins