Featured Research

from universities, journals, and other organizations

Red-Hot Research Could Lead To New Materials

Date:
April 11, 2009
Source:
Missouri University of Science and Technology
Summary:
Recent experiments to create a fast-reacting explosive by concocting it at the nanoscopic level could result in more spectacular firework displays. But more impressive to the researchers, the method used to mix chemicals at that tiny scale could lead to new strong porous materials for high temperature applications, from thermal insulation in jet engines to industrial chemical reactors.

Two versions of the aerogel -- the RF-only version (left) and the mixed version (right).
Credit: Image courtesy of Missouri University of Science and Technology

Recent experiments to create a fast-reacting explosive by concocting it at the nanoscopic level could result in more spectacular firework displays. But more impressive to the Missouri University of Science and Technology professor who led the research, the method used to mix chemicals at that tiny scale could lead to new strong porous materials for high temperature applications, from thermal insulation in jet engines to industrial chemical reactors.

Researchers led by Dr. Nicholas Leventis, a professor of chemistry at Missouri S&T, reported in the April 8 Journal of the American Chemical Society that they created a new type of flammable nanomaterial by combining an oxidizer (copper oxide) with an organic fuel (a resorcinol-formaldehyde polymer, or RF). Nanomaterials are made from substances that are one billionth of a meter – the size of a few molecules. This achievement has been highlighted in the online edition of Nature Chemistry.

The new nanomaterial burned rapidly when ignited by a flame, leaving behind minimal residue, Nature Chemistry’s April 3 Research Highlights section reported on the Leventis research.

While the Leventis research is based on the hypothesis that the performance of so-called low-order explosives such as gunpowder can be improved by mixing the oxidizer and fuel as closely as possible – at the nano level, nanoparticle to nanoparticle – Leventis is more excited about the “very far-reaching implications” of the experiment.

“The broader impact of this research is in the methodology of making intimate mixtures of nanoparticles that can react efficiently and fast. That will most certainly lead to future innovations in materials science. Energetic materials is just an example,” he says.

Mixing materials at the nano level may lead to stronger substances, because the two materials may be more closely woven together. Leventis sees this approach leading to such materials engineering breakthroughs as the development of microporous ceramics that can hold up under extremely high temperatures.

The more immediate application of this research could be in pyrotechnics, Leventis explains. Fireworks are considered low-order explosives, meaning that their reaction rate can be improved by mixing the oxidizer and fuel as closely as possible.

With this research, Leventis and his Missouri S&T colleagues worked with Dr. Hongbing Lu, a professor of mechanical and aerospace engineering at Oklahoma State University, to create a fluffy, low-density mixed aerogel from the copper oxide and the RF nanoparticles.

To make the mixed network of nanoparticles, the researchers devised a one-pot sol-gel method, in which they used the gelling colloidal solution (“sol”) of one component (copper oxide) as the catalyst for the gelation of the second component (RF). In the final product, copper oxide acted as the fuse to catalyze, or ignite, the RF fuel.

The research was originally published March 17 in the online in the Journal of the American Chemical Society. Working with Leventis at S&T were Dr. Chariklia Sotirou-Leventis, professor of chemistry, and Naveen Chandrasekaran and Anand G. Sadekar, both graduate students in chemistry.


Story Source:

The above story is based on materials provided by Missouri University of Science and Technology. Note: Materials may be edited for content and length.


Journal References:

  1. Leventis et al. One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. Journal of the American Chemical Society, 2009; 131 (13): 4576 DOI: 10.1021/ja809746t
  2. Neil Withers. Energetic materials: Burn baby burn. Nature Chemistry, 2009; DOI: 10.1038/nchem.205

Cite This Page:

Missouri University of Science and Technology. "Red-Hot Research Could Lead To New Materials." ScienceDaily. ScienceDaily, 11 April 2009. <www.sciencedaily.com/releases/2009/04/090409152740.htm>.
Missouri University of Science and Technology. (2009, April 11). Red-Hot Research Could Lead To New Materials. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/04/090409152740.htm
Missouri University of Science and Technology. "Red-Hot Research Could Lead To New Materials." ScienceDaily. www.sciencedaily.com/releases/2009/04/090409152740.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins