Featured Research

from universities, journals, and other organizations

Creating Ideal Neural Cells For Clinical Use

Date:
April 18, 2009
Source:
Burnham Institute
Summary:
Investigators have developed a protocol to rapidly differentiate human embryonic stem cells into neural progenitor cells that may be ideal for transplantation. The research outlines a method to create these committed neural precursor cells that is replicable, does not produce mutations in the cells and could be useful for clinical applications.

Investigators at the Burnham Institute for Medical Research (Burnham) have developed a protocol to rapidly differentiate human embryonic stem cells (hESCs) into neural progenitor cells that may be ideal for transplantation.

Related Articles


The research, conducted by Alexei Terskikh, Ph.D., and colleagues, outlines a method to create these committed neural precursor cells (C-NPCs) that is replicable, does not produce mutations in the cells and could be useful for clinical applications.

When the C-NPCs created using the Terskikh protocol were transplanted into mice, they became active neurons and integrated into the cortex and olfactory bulb. The transplanted cells did not generate tumor outgrowth.

“The uniform conversion of embryonic stem cells into neural progenitors is the first step in the development of cell-based therapies for neurodegenerative disorders or spinal injuries,” said Dr. Terskikh. “Many of the methods used to generate neural precursor cells for research in the lab would never work in therapeutic applications. This protocol is very well suited for clinical application because it is robust, controllable and reproducible.”

Dr. Terskikh notes that the extensive passaging (moving cells from plate to plate) required by some protocols to expand the numbers of neural precursor cells limits the plasticity of the cells, can introduce mutations and may lead to the expression of oncogenes. The Terskikh protocol avoids this by using efficient conversion of hESCs into primary neuroepithelial cells without the extensive passaging.

The scientists were able to rapidly neuralize the hESCs by culturing them in small clusters in a liquid suspension. The cells developed the characteristic “rosettes” seen in neuroepithelial cells. The C-NPCs were then cultured in monolayers. Immunochemical and RT-PCR analysis of the cells demonstrated that they were uniformly C-NPCs. Whole-genome analysis confirmed this finding. Immunostaining and imaging showed that the cells could be differentiated into three distinct types of neural cells. The team then demonstrated that the C-NPCs differentiated into neurons after transplantation into the brains of neonatal mice.

The research was published on March 13 in the journal Cell Death and Differentiation. This research received funding from the National Institutes of Health and the California Institute for Regenerative Medicine.


Story Source:

The above story is based on materials provided by Burnham Institute. Note: Materials may be edited for content and length.


Cite This Page:

Burnham Institute. "Creating Ideal Neural Cells For Clinical Use." ScienceDaily. ScienceDaily, 18 April 2009. <www.sciencedaily.com/releases/2009/04/090413141303.htm>.
Burnham Institute. (2009, April 18). Creating Ideal Neural Cells For Clinical Use. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/04/090413141303.htm
Burnham Institute. "Creating Ideal Neural Cells For Clinical Use." ScienceDaily. www.sciencedaily.com/releases/2009/04/090413141303.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins