Featured Research

from universities, journals, and other organizations

Important Breakthrough Towards Silicon-based All-optical Integrated Circuits

Date:
April 18, 2009
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
The first experimental proof of all-optical ultra-fast communication signal processing with silicon-based devices for transmission speeds above 100Gbit/s has been published.

Scanning electron microscope picture of the cross-section of the vapor deposited organic film covering the silicon waveguide. The waveguide is patterned on a silicon-on-insulator substrate.
Credit: Image courtesy of Interuniversity Microelectronics Centre (IMEC)

Nature Photonics has published the first experimental proof of all-optical ultra-fast communication signal processing with silicon-based devices for transmission speeds above 100Gbit/s.

Related Articles


The paper results from the collaboration between University of Karlsruhe, Germany; IMEC, Leuven, Belgium; Lehigh University, USA and ETH Zόrich, Switzerland. The achievements are a key step towards the development of complex silicon-based photonic integrated circuits.

All-optical signal processing is particularly of interest in telecommunications applications, where speed, power and cost are crucial. A key element to enable all-optical processing is optical waveguides with highly nonlinear and ultra-fast performance. Researchers from University of Karlsruhe, IMEC and its associated laboratory INTEC at Ghent University, Lehigh University and ETH Zόrich fabricated an innovative optical waveguide structure by combining deep-ultraviolet lithography, standard CMOS processing and organic molecular beam deposition. This so-called silicon-organic hybrid (SOH) approach enables the fabrication of waveguides which pave the way towards all-optical processing, where photons do no longer need to be converted to electrons. This is considered to be one of the most promising ways to handle the rapidly increasing global communication traffic.

A 4mm long SOH waveguide with a record nonlinearity coefficient of γ ≈ 105(Wkm)-1 in the 1.55΅m telecommunication window proved the capability of the SOH concept. As such, record values predicted by theory have for the first time been experimentally confirmed. Based on these waveguides, all-optical demultiplexing of a 170.8Gbit/s telecommunication signal to 42.7Gbit/s was performed using four-wave mixing. This is the fastest silicon photonic optical signal processing demonstrated to date. This experiment proved the viability of the SOH waveguides for all-optical processing of broadband telecommunication signals.

With the SOH approach, some inherent limitations of silicon could be overcome. Silicon-based technology, in particular silicon-on-insulator (SOI) technology, has already proven very successful for the fabrication of various passive linear optical devices such as filters. The development of ultra-fast active Si-based functionalities, such as all-optical switching, remained challenging due to the slow dynamics caused by unwanted non-linear effects in silicon. So far, the data rate achieved by using bare silicon waveguides was limited to only 40Gbit/s.

The SOH approach overcomes this intrinsic limitation - thus enabling data rates above 100Gbit/s - by combining the best of two worlds: mature CMOS processing is used to fabricate the waveguide, and organic molecular beam deposition is used to cover it with organic molecules. These molecules efficiently transfer all-optical interaction without introducing significant absorption. The ability of the organic material to homogeneously fill the slot between the waveguides is a key feature of the deposition process.

The silicon circuits were designed by researchers of the University of Karlsruhe in a fabless way, and were fabricated through the ePIXfab service on IMEC’s 200mm silicon photonics platform. ePIXfab is a European funded initiative coordinated by IMEC to allow cost-effective fabless prototyping in wafer-scale silicon photonics technology for R&D.


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Important Breakthrough Towards Silicon-based All-optical Integrated Circuits." ScienceDaily. ScienceDaily, 18 April 2009. <www.sciencedaily.com/releases/2009/04/090414084455.htm>.
Interuniversity Microelectronics Centre (IMEC). (2009, April 18). Important Breakthrough Towards Silicon-based All-optical Integrated Circuits. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2009/04/090414084455.htm
Interuniversity Microelectronics Centre (IMEC). "Important Breakthrough Towards Silicon-based All-optical Integrated Circuits." ScienceDaily. www.sciencedaily.com/releases/2009/04/090414084455.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) — Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) — She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) — Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins