Featured Research

from universities, journals, and other organizations

Medical Micro-robots Made As Small As Bacteria

Date:
April 19, 2009
Source:
ETH Zurich
Summary:
For the first time, researchers have built micro-robots as small as bacteria. Their purpose is to help cure human beings.

Artificial bacterial flagella are about half as long as the thickness of a human hair. They can swim at a speed of up to one body length per second. This means that they already resemble their natural role models very closely.
Credit: Institute of Robotics and Intelligent Systems/ETH Zurich

For the first time, ETH Zurich researchers have built micro-robots as small as bacteria. Their purpose is to help cure human beings.

They look like spirals with tiny heads, and screw through the liquid like miniature corkscrews. When moving, they resemble rather ungainly bacteria with long whip-like tails. They can only be observed under a microscope because, at a total length of 25 to 60 m, they are almost as small as natural flagellated bacteria. Most are between 5 and 15 m long, a few are more than 20 m.

Mimicking nature

The tiny spiral-shaped, nature-mimicking lookalikes of E. coli and similar bacteria. are called “Artificial Bacterial Flagella” (ABFs), the “flagella” referring to their whip-like tails. They were invented, manufactured and enabled to swim in a controllable way by researchers in the group led by Bradley Nelson, Professor at the Institute of Robotics and Intelligent Systems at ETH Zurich. In contrast to their natural role model, some of which cause diseases, the ABFs are intended to help cure diseases in the future.

The practical realization of these artificial bacteria, the smallest yet created, with a rigid flagellum and external actuation, was made possible mainly by the self-scrolling technique from which the spiral-shaped ABFs are constructed. ABFs are fabricated by vapor-depositing several ultra-thin layers of the elements indium, gallium, arsenic and chromium onto a substrate in a particular sequence. They are then patterned from it by means of lithography and etching. This forms super-thin, very long narrow ribbons that curl themselves into a spiral shape as soon as they are detached from the substrate, because of the unequal molecular lattice structures of the various layers. Depending on the deposited layer thickness and composition, a spiral is formed with different sizes which can be precisely defined by the researchers. Nelson says, “We can specify not only how small the spiral is, but even the scrolling direction of the ribbon that forms the spiral.”

External propulsion via magnetic field

Even before releasing the ribbon that will afterwards form the artificial flagellum, a kind of head for the mini-robot is attached to one of its ends. It consists of a chromium-nickel-gold tri-layer film, also vapor-deposited. Nickel is soft-magnetic, in contrast to the other materials used, which are non-magnetic. Nelson explains that, “This tiny magnetic head enables the ABF to move in a specific way in a magnetic field.” The spiral-shaped ABF swim through the liquid and its movements can be observed and recorded under a microscope.

With the software developed by the group, the ABF can be steered to a specific target by tuning the strength and direction of the rotating magnetic field which is generated by several coils. The ABFs can move forwards and backwards, upwards and downwards, and can also rotate in all directions. Brad Nelson says “There’s a lot of physics and mathematics behind the software.” The ABFs do not need energy of their own to swim, nor do they have any moving parts. The only decisive thing is the magnetic field, towards which the tiny head constantly tries to orientate itself and in whose direction it moves. The ABFs currently swim at a speed of up to 20 m, i.e. up to one body length, per second. Nelson expects that it will be possible to increase the speed to more than 100 m per second. For comparison: E. coli swims at 30 m per second.

Possible applications in medicine

The ABFs have been designed for biomedical applications. For example, they could carry medicines to predetermined targets in the body, remove plaque deposits in the arteries or help biologists to modify cellular structures that are too small for direct manipulation by researchers. In initial experiments, the ETH Zurich researchers have already made the ABFs carry around polystyrene micro-spheres.

At the moment, however, the group is still carrying out basic research. Further investigations will be needed before there can be any practical applications. Nelson explains that, “For applications in the human body, it would first of all be necessary to steer the ABFs precisely, track their route without optical monitoring and guarantee their localization at all times.” If ABFs are to deliver drugs, they would first of all have to be functionalized in a feasible way and then need to be able to release the drugs precisely in situ. The plan is for the ABFs themselves to become even faster and smaller. Nelson is enthusiastic about how ingeniously nature has designed natural bacteria. He is happy that his group’s ABFs already resemble the originals so closely.


Story Source:

The above story is based on materials provided by ETH Zurich. Note: Materials may be edited for content and length.


Cite This Page:

ETH Zurich. "Medical Micro-robots Made As Small As Bacteria." ScienceDaily. ScienceDaily, 19 April 2009. <www.sciencedaily.com/releases/2009/04/090418085333.htm>.
ETH Zurich. (2009, April 19). Medical Micro-robots Made As Small As Bacteria. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2009/04/090418085333.htm
ETH Zurich. "Medical Micro-robots Made As Small As Bacteria." ScienceDaily. www.sciencedaily.com/releases/2009/04/090418085333.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins