Featured Research

from universities, journals, and other organizations

New Effort To Discover Habitable Earth-like Planets Around Other Stars

Date:
April 26, 2009
Source:
Royal Astronomical Society
Summary:
Astronomers have announced plans to build an ultra-stable, high-precision spectrograph for the Science and Technology Facilities Council's 4.2-m William Herschel Telescope in an effort to discover habitable Earth-like planets around other stars.

The original HARPS spectrograph at the European Southern Observatory, during laboratory tests. The vacuum tank which isolates the spectrograph from the environment is open, allowing some of the high-precision optical components to be seen. The large optical grating, measuring 20 x 80 cm, is visible on top of the bench. It disperses the incoming stellar light into the spectrum from which the stellar Doppler 'wobble' is measured.
Credit: ESO

Astronomers have announced plans to build an ultra-stable, high-precision spectrograph for the Science and Technology Facilities Council's 4.2-m William Herschel Telescope (WHT - part of the Isaac Newton Group or ING on La Palma) in an effort to discover habitable Earth-like planets around other stars.

Related Articles


Dr Ian Skillen of the ING will present the new High Accuracy Radial-velocity Planet Search – New Earths Facility (HARPS-NEF) spectrograph in a poster on Monday 20th April at the European Week of Astronomy and Space Science conference at the University of Hertfordshire.

Spectrographs analyse the electromagnetic spectrum of light emitted from stars and other objects and allow astronomers to measure properties like velocity and temperature. The super sensitive HARPS-NEF spectrograph is currently under construction by a collaboration between Harvard University's Origins of Life Initiative, New Earths Facility, and the HARPS team of the University of Geneva and is expected to start operation soon after 2010.

A planet and its parent star orbit around a common centre of mass. As a (usually unseen) planet moves its gravitational pull exerts a small reflex motion on the star. The magnitude of this stellar 'wobble' is measured from the resulting Doppler shift imposed on its spectrum. A planet as small as the Earth causes a reflex motion of the Sun of just about 9 cm/sec, which is less than 1 km/hour, or equivalent to the speed of a rather gentle stroll! Other objects such as white dwarfs and stellar companions on the other hand cause a larger reflex motion in excess of 1 km/sec, and so are much easier to identify.

By measuring the wobble of their parent stars, HARPS-NEF will use this technique to discover and characterise Earth-like planets from candidates identified by NASA's Kepler mission, launched on 6th March this year. It will incorporate several improvements on the original HARPS spectrograph at the European Southern Observatory in Chile, most notably the use of a laser frequency grid or 'astro comb', which will provide the ultra-stable wavelength reference against which tiny Doppler motions can be measured with an unparalleled precision of a few cm/s over a period of years.

Kepler will carry out a continuous 4-year survey of more than 100000 stars in the constellations of Cygnus and Lyra. It will search for the small, periodic dips in brightness that result from a planet passing directly in front of the star it orbits in a so-called transit. An Earth-like planet moving in front of its star causes a dip in brightness of about 1 part in 10000 and can last for several hours. However, other objects like the Earth-sized white dwarfs (compact objects that are the end state of stars like the Sun) can mimic this dip. So in conjunction with the Kepler observations, the HARPS-NEF measurements will allow astronomers to calculate both the mass and size of the orbiting objects and confirm them as planets. The mean density (from mass and size) will show if a planet is rocky and dry or rich in water.

But determining the tiny changes in the motions of stars that result from orbiting Earth candidates is a huge challenge. It is the achievement of this precision and stability over many years that makes HARPS-NEF the most advanced facility of its kind in the world.

The scientists believe that the Kepler mission and HARPS-NEF on the WHT together have the real prospect of discovering a number of Earth-like planets capable of supporting life. Professor Dimitar Sasselov (Director, Harvard Origins of Life Initiative and HARPS-NEF project leader) comments, “ A new age of exploration is about to begin, as HARPS-NEF will spy on the new Earths identified by the Kepler mission to show us what they are made of and infer their surface conditions.”

Dr Ian Skillen (ING project scientist for HARPS-NEF) adds, "The discovery of habitable, Earth-like planets orbiting other stars is now within our grasp. HARPS-NEF will play a fundamental role in this giant step forward in our quest for life elsewhere in the Universe.”


Story Source:

The above story is based on materials provided by Royal Astronomical Society. The original article was written by Robert Massey. Note: Materials may be edited for content and length.


Cite This Page:

Royal Astronomical Society. "New Effort To Discover Habitable Earth-like Planets Around Other Stars." ScienceDaily. ScienceDaily, 26 April 2009. <www.sciencedaily.com/releases/2009/04/090419205244.htm>.
Royal Astronomical Society. (2009, April 26). New Effort To Discover Habitable Earth-like Planets Around Other Stars. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/04/090419205244.htm
Royal Astronomical Society. "New Effort To Discover Habitable Earth-like Planets Around Other Stars." ScienceDaily. www.sciencedaily.com/releases/2009/04/090419205244.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins