Featured Research

from universities, journals, and other organizations

Catching The Lightwave: Nano-mechanical Sensors 'Wired' By Photonics

Date:
May 4, 2009
Source:
Yale University
Summary:
As researchers push towards detection of single molecules, single electron spins and the smallest amounts of mass and movement, researchers have demonstrated silicon-based nanocantilevers, smaller than the wavelength of light, that operate on photonic principles eliminating the need for electric transducers and expensive laser setups. The work ushers in a new generation of tools for ultra-sensitive measurements at the atomic level.

Electronmicroscopic image of array (top) and simulation of lightwaves through array (bottom).
Credit: Li, Pernice,Tang / Yale

As researchers push towards detection of single molecules, single electron spins and the smallest amounts of mass and movement, Yale researchers have demonstrated silicon-based nanocantilevers, smaller than the wavelength of light, that operate on photonic principles eliminating the need for electric transducers and expensive laser setups.

The work reported in an April 26 advance online publication of Nature Nanotechnology ushers in a new generation of tools for ultra-sensitive measurements at the atomic level.

In nanoelectromechanical systems (NEMS), cantilevers are the most fundamental mechanical sensors. These tiny structures — fixed at one end and free at the other — act like nano-scale diving boards that "bend" when molecules "jump" on them and register a change that can be measured and calibrated. This paper demonstrates how NEMS can be improved by using integrated photonics to sense the cantilever motion.

"The system we developed is the most sensitive available that works at room temperature. Previously this level of sensitivity could only be achieved at extreme low temperatures" said senior author Hong Tang, assistant professor of electrical and mechanical engineering in the Yale School of Engineering and Applied Sciences.

Their system can detect as little deflection in the nano-cantilever sensors as 0.0001 Angstroms — one ten thousandth of the size of an atom

To detect this tiny motion, the Yale team devised a photonic structure to guide the light wave through a cantilever. After exiting from the free end of the cantilever, the light tunnels through a nanometer gap and is collected on chip. "Detecting the lightwave after this evanescent tunneling," says Tang, "gives the unprecedented sensitivity."

Tang's paper also details the construction of a sensor multiplex — a parallel array of 10 nano-cantilevers integrated on a single photonic wire. Each cantilever is a different length, like a key on a xylophone, so when one is displaced it registers its own distinctive "tone."

"A multiplex format lets us make more complex measurements of patterns simultaneously — like a tune with chords instead of single notes," said postdoctoral fellow Mo Li, the lead author of the paper.

At the heart of this breakthrough is the novel way Tang's group "wired" the sensors with light. Their technique is not limited by the bandwidth constraints of electrical methods or the diffraction limits of light sources.

"We don't need a laser to operate these devices," said Wolfram Pernice, a co-author of the paper. "Very cheap LEDs will suffice." Futhermore, the LED light sources — like the million LED pixels that make up a laptop computer screen — can be scaled in size to integrate into a nanophotonic-chip — an important feature for this application.

"This development reinforces the practicality of the new field of nanooptomechanics," says Tang, "and points to a future of compact, robust and scalable systems with high sensitivity that will find a wide range of future applications — from chemical and biological sensing to optical signal processing."

Funding for the research was from a Yale Institute for Nanoscience and Quantum Engineering seed grant, a National Science Foundation career award, and the Alexander-von-Humboldt postdoctoral fellowship programs.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mo Li, W. H. P. Pernice & H. X. Tang. Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009; DOI: 10.1038/nnano.2009.92

Cite This Page:

Yale University. "Catching The Lightwave: Nano-mechanical Sensors 'Wired' By Photonics." ScienceDaily. ScienceDaily, 4 May 2009. <www.sciencedaily.com/releases/2009/04/090426175648.htm>.
Yale University. (2009, May 4). Catching The Lightwave: Nano-mechanical Sensors 'Wired' By Photonics. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/04/090426175648.htm
Yale University. "Catching The Lightwave: Nano-mechanical Sensors 'Wired' By Photonics." ScienceDaily. www.sciencedaily.com/releases/2009/04/090426175648.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins