Featured Research

from universities, journals, and other organizations

First Neuroimaging Study Examining Motor Execution In Children With Autism Reveals New Insights

Date:
May 5, 2009
Source:
Kennedy Krieger Institute
Summary:
In the first neuroimaging study to examine motor execution in children with autism, researchers at have uncovered important new insight into the neurological basis of autism. The study compared the brain activity of children with high functioning autism and their typically developing peers while performing a simple motor task -- tapping their fingers in sequence.

In the first neuroimaging study to examine motor execution in children with autism, researchers at the Kennedy Krieger Institute have uncovered important new insight into the neurological basis of autism.

Related Articles


The study, published online in the journal Brain’s April 23 Brain Advanced Access, compared the brain activity of children with high functioning autism and their typically developing peers while performing a simple motor task—tapping their fingers in sequence. The researchers found that children with autism relied more heavily on a region of the brain responsible for conscious, effortful movement, while their typically developing peers utilized a region of the brain important for automating motor tasks. Children with autism also showed less connectivity between different regions of the brain involved in coordinating and executing movement, supporting the theory that a decreased ability of distant regions of the brain to communicate with each other forms the neurological basis of autism.

Researchers used fMRI scans to examine the brain activity of 13 children with high functioning autism and 13 typically developing children while performing sequential finger tapping. The typically developing children had increased activity in the cerebellum, a region of the brain important for automating motor tasks, while children with autism had increased activity in the supplementary motor area (SMA), a region of the brain important for conscious movement. This suggests children with autism have to recruit and rely on more conscious, effortful motor planning because they are not able to rely on the cerebellum to automate tasks.

Researchers also examined the functional connectivity of the brain regions involved in motor planning and execution in order to compare the activity between different brain regions involved in the same task. The children with autism showed substantially decreased connectivity between the different brain regions involved in motor planning and execution. These results add to increasing evidence that autism is related to abnormalities in structural and functional brain connectivity, which makes it difficult for distant regions of the brain to learn skills and coordinate activities.

“Tapping your fingers is a simple action, but it involves communication and coordination between several regions of the brain,” said Dr. Stewart H. Mostofsky, senior study author and a pediatric neurologist in the Department of Developmental Cognitive Neurology at the Kennedy Krieger Institute. “These results suggest that in children with autism, fairly close regions of the brains involved in motor tasks have difficulty coordinating activity. If decreased connectivity is at the heart of autism, it makes sense social and communication skills are greatly impaired, as they involve even more complex coordination between more distant areas of the brain.”

While autism is characterized by impaired communication and social skills, these abilities are hard for scientists to measure and quantify. In contrast, the neurological processes behind motor skills are well understood, and motor tasks can be objectively observed and measured. Examining motor execution provides researchers a way to study the basic brain systems important for learning and guiding actions, which has important implications for all learned behavior, including complex communication and social skills. Researchers at the Kennedy Krieger Institute have been using the study of motor skills as an important window into the neurobiological basis of autism.

“When we learn to interact with the world around us, we acquire many skills,” said Dr. Mostofsky. “Whether they are complex social skills or simple motor skills, they all begin with the brain responding to a stimulus and learning the appropriate response. In this way, studying motor skills provides important information about how the brain of a child with autism learns differently, and how autism affects the basic neural systems important for acquiring all skills, from tapping your toes in rhythm to recognizing emotions in the facial expressions of others.”

Funding support for this study was provided through grants from the National Alliance for Autism Research/Autism Speaks, the National Institutes of Health and the Johns Hopkins General Clinical Research Center.


Story Source:

The above story is based on materials provided by Kennedy Krieger Institute. Note: Materials may be edited for content and length.


Cite This Page:

Kennedy Krieger Institute. "First Neuroimaging Study Examining Motor Execution In Children With Autism Reveals New Insights." ScienceDaily. ScienceDaily, 5 May 2009. <www.sciencedaily.com/releases/2009/04/090429142649.htm>.
Kennedy Krieger Institute. (2009, May 5). First Neuroimaging Study Examining Motor Execution In Children With Autism Reveals New Insights. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/04/090429142649.htm
Kennedy Krieger Institute. "First Neuroimaging Study Examining Motor Execution In Children With Autism Reveals New Insights." ScienceDaily. www.sciencedaily.com/releases/2009/04/090429142649.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins