New! Sign up for our free email newsletter.
Science News
from research organizations

Computer Hackers R.I.P.: Making Quantum Cryptography Practical

Date:
May 2, 2009
Source:
Institute of Physics
Summary:
Quantum cryptography, a completely secure means of communication, is much closer to being used practically as researchers have now developed high speed detectors capable of receiving information with much higher key rates, thereby able to receive more information faster.
Share:
FULL STORY

Quantum cryptography, a completely secure means of communication, is much closer to being used practically as researchers from Toshiba and Cambridge University's Cavendish Laboratory have now developed high speed detectors capable of receiving information with much higher key rates, thereby able to receive more information faster.

New research details how quantum communication can be made possible without having to use cryogenic cooling and/or complicated optical setups, making it much more likely to become commercially viable soon.

One of the first practical applications to emerge from advances in the often baffling study of quantum mechanics, quantum cryptography has become the soon-to-be-reached gold standard in secure communications.

Quantum mechanics describes the fundamental nature of matter at the atomic level and offers very intriguing, often counter-intuitive, explanations to help us understand the building blocks that construct the world around us. Quantum cryptography uses the quantum mechanical behaviour of photons, the fundamental particles of light, to enable highly secure transmission of data beyond that achievable by classical encryption.

The photons themselves are used to distribute keys that enable access to encrypted information, such as a confidential video file that, say, a bank wishes to keep completely confidential, which can be sent along practical communication lines, made of fibre optics. Quantum indeterminacy, the quantum mechanics dictum which states that measuring an unknown quantum state will change it, means that the key information cannot be accessed by a third party without corrupting it beyond recovery and therefore making the act of hacking futile.

While other detectors can offer a key rate close to that reported in this journal paper, the present advance only relies on practical components for high speed photon detection, which has previously required either cryogenic cooling or highly technical optical setups, to make quantum key distribution much more user-friendly.

Using an attenuated (weakened) laser as a light source and a compact detector (semiconductor avalanche photodiodes), the researchers have introduced a decoy protocol for guarding against intruder attacks that would confuse with erroneous information all but the sophisticated, compact detector developed by the researchers.

As the researchers write, "With the present advances, we believe quantum key distribution is now practical for realising high band-width information-theoretically secure communication."

Governments, banks and large businesses who fear the leaking of sensitive information will, no doubt, be watching closely.


Story Source:

Materials provided by Institute of Physics. Note: Content may be edited for style and length.


Journal Reference:

  1. Z L Yuan et al. Practical gigahertz quantum key distribution based on avalanche photodiodes. New Journal of Physics, 11 045019 DOI: 10.1088/1367-2630/11/4/045019

Cite This Page:

Institute of Physics. "Computer Hackers R.I.P: Making Quantum Cryptography Practical." ScienceDaily. ScienceDaily, 2 May 2009. <www.sciencedaily.com/releases/2009/04/090430065454.htm>.
Institute of Physics. (2009, May 2). Computer Hackers R.I.P: Making Quantum Cryptography Practical. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2009/04/090430065454.htm
Institute of Physics. "Computer Hackers R.I.P: Making Quantum Cryptography Practical." ScienceDaily. www.sciencedaily.com/releases/2009/04/090430065454.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES