Featured Research

from universities, journals, and other organizations

Method To Neutralize Tumor Growth In Embryonic Stem Cell Therapy Discovered

Date:
May 7, 2009
Source:
Hebrew University of Jerusalem
Summary:
Researchers have discovered a method to potentially eliminate the tumor-risk factor in utilizing human embryonic stem cells. Their work paves the way for further progress in the promising field of stem cell therapy.

Researchers at the Hebrew University of Jerusalem have discovered a method to potentially eliminate the tumor-risk factor in utilizing human embryonic stem cells. Their work paves the way for further progress in the promising field of stem cell therapy.

Related Articles


Human embryonic stem cells are theoretically capable of differentiation to all cells of the mature human body (and are hence defined as "pluripotent"). This ability, along with the ability to remain undifferentiated indefinitely in culture, make regenerative medicine using human embryonic stem cells a potentially unprecedented tool for the treatment of various diseases, including diabetes, Parkinson's disease and heart failure.

A major drawback to the use of stem cells, however, remains the demonstrated tendency of such cells to grow into a specific kind of tumor, called teratoma, when they are implanted in laboratory experiments into mice. It is assumed that this tumorigenic feature will be manifested upon transplantation to human patients as well. The development of tumors from embryonic stem cells is especially puzzling given that these cells start out as completely normal cells.

A team of researchers at the Stem Cell Unit in the Department of Genetics at the Silberman Institute of Life Sciences at the Hebrew University has been working on various approaches to deal with this problem.

In their latest project, the researchers analyzed the genetic basis of tumor formation from human embryonic stem cells and identified a key gene that is involved in this unique tumorigenicity. This gene, called survivin, is expressed in most cancers and in early stage embryos, but it is almost completely absent from mature normal tissues.

The survivin gene is especially highly expressed in undifferentiated human embryonic stem cells and in their derived tumors. By neutralizing the activity of survivin in the undifferentiated cells as well as in the tumors, the researchers were able to initiate programmed cell death (apoptosis) in those cells.

This inhibition of this gene just before or after transplantation of the cells could minimize the chances of tumor formation, but the researchers caution that a combination of strategies may be needed to address the major safety concerns regarding tumor formation by human embryonic stem cells.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University of Jerusalem. "Method To Neutralize Tumor Growth In Embryonic Stem Cell Therapy Discovered." ScienceDaily. ScienceDaily, 7 May 2009. <www.sciencedaily.com/releases/2009/05/090506093950.htm>.
Hebrew University of Jerusalem. (2009, May 7). Method To Neutralize Tumor Growth In Embryonic Stem Cell Therapy Discovered. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/05/090506093950.htm
Hebrew University of Jerusalem. "Method To Neutralize Tumor Growth In Embryonic Stem Cell Therapy Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/05/090506093950.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins