Featured Research

from universities, journals, and other organizations

Genes Found To Play Role In Breast Cancer's Spread To Brain

Date:
May 7, 2009
Source:
Memorial Sloan-Kettering Cancer Center
Summary:
Scientists have identified three genes that specifically mediate the metastasis, or spread, of breast cancer to the brain and illuminates the mechanisms by which this spread occurs.

New research led by investigators at Memorial Sloan-Kettering Cancer Center (MSKCC) identifies three genes that specifically mediate the metastasis, or spread, of breast cancer to the brain and illuminates the mechanisms by which this spread occurs.

Related Articles


According to the study, COX2 and HB-EGF — genes that induce cancer cell mobility and invasiveness — were found to be genetic mediators in the spread of breast cancer to the brain. A third gene, ST6GALNAC5, was shown to provide cancer cells with the capability of exiting the blood circulation and passing through the blood-brain barrier to enter the brain tissue.

"Our research sheds light on the role these genes play in determining how breast tumor cells break free and, once mobile, how they decide where to attack," said Joan Massagué, PhD, Chair of the Cancer Biology and Genetics Program at MSKCC and a Howard Hughes Medical Institute investigator.

Breast cancer metastasis to the brain typically occurs years after removal of a breast tumor, suggesting that disseminated cancer cells initially lack the specialized functions needed to overtake the dense network of capillaries that constitute the blood-brain barrier. This barrier prevents the entry of circulating cells and regulates the transport of molecules into the brain tissue. To generate brain metastasis, circulating cancer cells must, therefore, be able to pass through the blood-brain barrier and interact with the brain microenvironment.

In the study, Dr. Massagué and his colleagues isolated cancer cells that preferentially targeted the brain from patients with advanced disease. By combining this approach with gene expression profiling, additional testing in mouse model systems, and analysis of a body of clinical data, the investigators identified certain genes and functions that selectively mediate cancer cell passage through the blood-brain barrier.

The authors observed that ST6GALNAC5, an enzyme that is normally active only in brain tissue, causes a chemical reaction that creates a coating on the surface of breast cancer cells that enhances their ability to breach the blood-brain barrier. Their findings show that breast cancer cells use this brain-specific cell-coating enzyme as a means of infiltrating the brain.

"Our results draw attention to the role of the cell surface coating as a previously unrecognized participant in brain metastasis, and to the possibility of using drugs to disrupt its interactions," said Dr. Massagué. "Further study is necessary to explore the role of these genes in brain metastasis and their interest as therapeutic targets."

The study authors also noted that COX2 and HB-EGF, which prime breast cancer cells for entrance into the brain, had previously been found to be involved in breast cancer's spread to the lung. This suggests a partial sharing of genetic mediators of metastasis to both the brain and lung and may explain the association of brain and lung relapse in women with breast cancer.

Metastasis is responsible for the majority of all cancer deaths and occurs when tumor cells acquire the ability to escape their original location and invade healthy tissue and organs elsewhere in the body. According to the National Cancer Institute, 170,000 new cases of cancer metastasis to the brain are diagnosed each year in the United States alone. The incidence of brain metastases is rising as a result of their resistance to treatments that are effective against cancer spread to other sites.

Researchers from the University of Chicago and the following institutions in The Netherlands contributed to this research: Academic Medical Center, Amsterdam; Erasmus Medical College, Rotterdam; Josephine Nefkens Institute, Rotterdam; and Cancer Genomics Centre, Rotterdam.

The work was supported by grants from the National Institutes of Health, the Kleberg Foundation, the Hearst Foundation, and the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.


Story Source:

The above story is based on materials provided by Memorial Sloan-Kettering Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paula D. Bos et al. Genes that mediate breast cancer metastasis to the brain. Nature, May 6, 2009 DOI: 10.1038/nature08021

Cite This Page:

Memorial Sloan-Kettering Cancer Center. "Genes Found To Play Role In Breast Cancer's Spread To Brain." ScienceDaily. ScienceDaily, 7 May 2009. <www.sciencedaily.com/releases/2009/05/090506144305.htm>.
Memorial Sloan-Kettering Cancer Center. (2009, May 7). Genes Found To Play Role In Breast Cancer's Spread To Brain. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2009/05/090506144305.htm
Memorial Sloan-Kettering Cancer Center. "Genes Found To Play Role In Breast Cancer's Spread To Brain." ScienceDaily. www.sciencedaily.com/releases/2009/05/090506144305.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill Test Can Predict Chance Of Death Within A Decade

Treadmill Test Can Predict Chance Of Death Within A Decade

Newsy (Mar. 2, 2015) — Johns Hopkins researchers analyzed 58,000 heart stress tests to come up with a formula that predicts a person&apos;s chances of dying in the next decade. Video provided by Newsy
Powered by NewsLook.com
Going Gluten-Free Could Get You A Tax Break

Going Gluten-Free Could Get You A Tax Break

Newsy (Mar. 2, 2015) — If a doctor advises you to remove gluten from your diet, you could get a tax deduction on the amount you spend on gluten-free foods. Video provided by Newsy
Powered by NewsLook.com
GlaxoSmithKline and Novartis Try Swapping Success

GlaxoSmithKline and Novartis Try Swapping Success

Reuters - Business Video Online (Mar. 2, 2015) — GlaxoSmithKline and Novartis have completed a series of asset swaps worth more than $20 billion. As Grace Pascoe reports they say the deal will reshape both drugmakers. Video provided by Reuters
Powered by NewsLook.com
How Can West Africa Rebuild After Ebola?

How Can West Africa Rebuild After Ebola?

Reuters - Business Video Online (Mar. 2, 2015) — How best to rebuild the three West African countries struggling with Ebola will be discussed in Brussels this week. As Hayley Platt reports Sierra Leone has the toughest job ahead - its once thriving economy has been ravaged by the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins