Featured Research

from universities, journals, and other organizations

How Cells Move: Cooperative Forces Boost Collective Mobility Of Cells

Date:
May 11, 2009
Source:
Universidad de Barcelona
Summary:
Scientists now have an experimental answer to the question of how cells move during biological processes as diverse as the development, metastasis, or regeneration of tissues. The work addresses the issue of collective mobility of cells, that is to say, how cells are moved within tissues, and what is the prevalent form of movement inside living organisms.

Collective cell mobility is the result of a cooperative process.
Credit: Image courtesy of Universidad de Barcelona

Research by scientists in Spain and their colleagues offers for the first time an experimental answer to the question of how cells move during biological processes as diverse as the development, metastasis, or regeneration of tissues.

Related Articles


The work addresses the issue of collective mobility of cells, that is to say, how cells are moved within tissues, and what is the prevalent form of movement inside living organisms.

"Research into collective cell mobility is very active due to the direct implications it has on fields such as embryologic development, organ regeneration, and cancer. For example, if we could find a way to control cell mobility during metastasis, cancer would be a curable disease in the majority of cases," says Dr. Xavier Trepat, senior researcher of the cellular and respiratory biomechanics group and researcher in the Department of Physiological Sciences at the University of Barcelona, and in the Networking Biomedical Research Centre for respiratory diseases (CIBER).

Up until now, scientists had proposed various mechanisms to explain collective cell migration. One hypothesis for example, suggests that the cells move collectively due to the existence of “leader” cells, which stretch out in the rest of the group, like a train pulls carriages behind it. Another hypothesis suggests that each cell moves independently to those around it, like cars on the motorway during a traffic jam, or like soldiers in a military parade. “We have rejected both these possibilities,” says Trepat.

According to his research, collective cell mobility is the result of a cooperative process in which each cell contributes to the movement of the group, stretching to those around it. “It is a mechanism similar to a tug-of-war game, in which two teams pull a rope by its extremes and the team that pulls the hardest wins. During the game, each player generates force and transmits it to the rope, so that the tension in the rope is the sum of the forces generated by each member of the team. Cells do the same. Each cell generates force to stretch to its neighbours in the direction of the movement» explains the researcher.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xavier Trepat, Michael R. Wasserman, Thomas E. Angelini, Emil Millet, David A. Weitz, James P. Butler & Jeffrey J. Fredberg. Physical forces during collective cell migration. Nature Physics, 2009; DOI: 10.1038/nphys1269

Cite This Page:

Universidad de Barcelona. "How Cells Move: Cooperative Forces Boost Collective Mobility Of Cells." ScienceDaily. ScienceDaily, 11 May 2009. <www.sciencedaily.com/releases/2009/05/090506152803.htm>.
Universidad de Barcelona. (2009, May 11). How Cells Move: Cooperative Forces Boost Collective Mobility Of Cells. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2009/05/090506152803.htm
Universidad de Barcelona. "How Cells Move: Cooperative Forces Boost Collective Mobility Of Cells." ScienceDaily. www.sciencedaily.com/releases/2009/05/090506152803.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) — Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins