Featured Research

from universities, journals, and other organizations

Unprecedented Data On Circadian Rhythms Revealed

Date:
May 13, 2009
Source:
Barcelona Science Park
Summary:
Fluctuations in light intensity allow restoring the regularity of circadian rhythms. In higher organisms, such as mammals, biological or circadian rhythms are generated by a multicellular genetic clock which is located in two regions of the hypothalamus that are connected to each other known as suprachiasmatic nuclei (SCN), containing about 10,000 neurons each. In order to generate and regulate circadian rhythms, our biological clock needs to use the “cooperative cell behavior” of SCN neurons.

Fluctuations in light intensity allow restoring the regularity of circadian rhythms. This is the main conclusion of the work carried out by Javier Buceta, group leader of The.Si.M.Bio.Sys. Group(Theoretical and In Silico Modelling of Biological Systems) from the Co.S.Mo Lab –based at the Barcelona Science Park– and Antoni Dνez-Noguera, dean at the Faculty of Pharmacy of the University of Barcelona and group leader of Chronobiology at the Department of Physiology of the said faculty.

Ekkehard Ullner and J. Garcνa Ojalvo, from the Polytechnic University of Catalonia (UPC) have also participated in the work.

In higher organisms, such as mammals, biological or circadian rhythms are generated by a multicellular genetic clock which is located in two regions of the hypothalamus that are connected to each other known as suprachiasmatic nuclei (SCN), containing about 10,000 neurons each. In order to generate and regulate circadian rhythms, our biological clock needs to use the “cooperative cell behaviour” of SCN neurones.

These neurons generate self-sustained, coherent oscillations and interact in a coupled manner –through a genetic circuit- forming a single unique rhythm (circadian rhythm) that is very efficiently modulated by the light-darkness alternance cycle in the 24 hours of a day.

Up until now, several studies had established that arrhythmia was associated with a lack of coordination among the periodic expression of SCN neurone proteins: in arrhythmic animals, the expression of SCN neurone proteins is desynchronised. It was also known that constant light is one of the triggers of arrhythmia. Neurons are only capable of generating self-sustained and coherent oscillations (biological rhythm) if the illumination is sufficiently low. However, when intensity is increased, this coherent behaviour is lost and the biological rhythm is distorted: animals become arrhythmic.

The researchers of the study looked at the possibility to restore rhythmicity in the animals under these conditions by means of fluctuations in light intensity and decided to use mathematical modelling techniques to simulate the genetic and cell interactions of the neuro-physiological system that regulates the biological clock. This in silico experiment is of extraordinary interest because it has enabled researchers to find out that light intensity fluctuations help restore rhythmicity and coherence of circadian rhythms, and not the contrary, that is, their distortion, as could be intuitively deduced. 

“This research work has enabled us to explore a phenomenon known in physics as “coherence resonance”, which shows that noise (understood as irregular fluctuations) may be an order source. In other words, chance is not an order that induces disorder, but totally the opposite; for some biological processes, such as the circadian rhythm, it can be beneficial. Noise-induced coherence has previously been established in other systems. Our objective was to implement this coherence in the control of circadian rhythms”, explained Javier Buceta, group leader of The SiMBioSys.

In the work, researchers also worked on how interactions between light fluctuations and intercellular coupling affected the dynamics of the collective rhythm. The outcome of the research has helped gain further understanding of the genetic circuit of the approximately 20,000 neurons that control circadian rhythms and, to gain further insight into the influence exerted by the periodic expression of the involved proteins in the synchronisation process of this multicellular clock.

“Thanks to this computer-generated simulation we have been able to discover that light fluctuations play a constructive role by synchronising communication -via a neurotransmitter- between neurones The study constitutes a new example of how modelling has become a very useful tool to discover in silico new phenomena in biological processes that will be subsequently corroborated in vivo”, continued to explain Javier Buceta.

In support the hypothesis formulated by this in silico study, the authors are currently conducting in vivo trials with mice. The trials are headed by Antoni Dνez-Noguera, current dean of the Faculty of Pharmacy at the University of Barcelona, and group leader of Chronobiology at the Department of Physiology of this faculty. Dνez-Noguera has been studying for over 30 years the structure and functioning of the circadian rhythm in rodents.


Story Source:

The above story is based on materials provided by Barcelona Science Park. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ullner et al. Noise-Induced Coherence in Multicellular Circadian Clocks. Biophysical Journal, 2009; 96 (9): 3573 DOI: 10.1016/j.bpj.2009.02.031

Cite This Page:

Barcelona Science Park. "Unprecedented Data On Circadian Rhythms Revealed." ScienceDaily. ScienceDaily, 13 May 2009. <www.sciencedaily.com/releases/2009/05/090507072824.htm>.
Barcelona Science Park. (2009, May 13). Unprecedented Data On Circadian Rhythms Revealed. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/05/090507072824.htm
Barcelona Science Park. "Unprecedented Data On Circadian Rhythms Revealed." ScienceDaily. www.sciencedaily.com/releases/2009/05/090507072824.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) — Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) — A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins