Featured Research

from universities, journals, and other organizations

Non-wovens As Scaffolds For Artificial Tissue

Date:
May 21, 2009
Source:
Fraunhofer-Gesellschaft
Summary:
In future, cartilage, tendon and blood vessel tissue will be produced in the laboratory, with cells being grown on a porous frame, such as non-wovens. A new software program helps to characterize and optimize the non-wovens.

Non-wovens as scaffolds for artificial tissue.
Credit: Image courtesy of Fraunhofer-Gesellschaft

When someone’s knee hurts with every step it’s a sign that the cartilage has been so badly damaged that the bones rub together when walking. Medical scientists are developing a technique to produce cartilage tissue artificially so that patients with such knee problems can walk free of pain again.

The aim is also to make tendons and blood vessels in the laboratory. The research scientists place cells on a porous scaffold material, for example a non-woven made of polymer fibers. The cells can then grow on this frame and form tissue.

Whether the cells will grow properly into tissue, however, depends on many factors. For instance, the cells only form cartilage if they are subjected to loads comparable with those in the body. To form cartilage the tissue needs to experience the pressure applied by every step. By contrast, blood vessel tissue needs the pulsation of the blood. The scientists reproduce these loads in the cell culture. When the artificial cartilage is inserted in the patient’s knee the supporting scaffold is gradually resorbed and only the cartilage tissue remains.

While it is quite easy to produce npn-wovens from thin polymer fibers, it is difficult to describe these materials experimentally and theoretically. What forces do the cells experience when the non-woven is pulled or when a liquid passes through the fibre network? How do cells penetrate the non-woven? How do liquids permeate the non-woven?

Research scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg and Halle have developed a simulation model which answers these questions and characterizes the fleeces. “The simulation reproduces the mechanical properties of the fleeces and the transport processes – the software can therefore also calculate how nutrients are transported to the cells and metabolic products are transported away from the cells when a liquid flows by,” explains Dr. Raimund Jaeger, group manager at the IWM. “Understanding these processes can be helpful for cell culture.” To produce the model, the research scientists initially studied the mechanical properties of the individual polymer fibers and for this purpose developed a special apparatus. On a silicon chip measuring one square centimeter, the scientists in Halle etched approximately 50 “microtesting machines”. They then placed and fastened the fibers over the testing machines. Under the microscope the researchers were able to observe how the fibers behave when they are pulled, how far they stretch and when they snap.

As fiber-like structures are frequently encountered in nature and technology, suitable experimental techniques and simulation methods have a wide range of applications.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Non-wovens As Scaffolds For Artificial Tissue." ScienceDaily. ScienceDaily, 21 May 2009. <www.sciencedaily.com/releases/2009/05/090513091520.htm>.
Fraunhofer-Gesellschaft. (2009, May 21). Non-wovens As Scaffolds For Artificial Tissue. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/05/090513091520.htm
Fraunhofer-Gesellschaft. "Non-wovens As Scaffolds For Artificial Tissue." ScienceDaily. www.sciencedaily.com/releases/2009/05/090513091520.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins