Featured Research

from universities, journals, and other organizations

Enabling Graphene-based Technology Via Chemical Functionalization

Date:
May 19, 2009
Source:
Northwestern University
Summary:
Graphene has attracted significant attention due to its potential use in high-performance electronics, sensors and alternative energy devices such as solar cells. While the physics of graphene has been thoroughly explored, chemical functionalization of graphene has proven to be elusive. Now researchers have identified conditions for chemically functionalizing graphene with the organic semiconductor perylene-3,4,9,10-tetracarboxylic-dianhydride. The chemistry's stability and uniformity suggest that it can be used as a platform for many device applications.

Graphene is an atomically thin sheet of carbon that has attracted significant attention due to its potential use in high-performance electronics, sensors and alternative energy devices such as solar cells. While the physics of graphene has been thoroughly explored, chemical functionalization of graphene has proven to be elusive.

Now researchers at Northwestern University have identified conditions for chemically functionalizing graphene with the organic semiconductor perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA).

PTCDA self-assembles into a molecularly pristine monolayer that is nearly defect-free as verified by ultra-high vacuum scanning tunneling microscopy. In addition, the PTCDA monolayers are stable at room temperature and atmospheric pressure, which suggest their use as a seeding layer for subsequent materials deposition.

Through chemical functionalization and materials integration, the outstanding electrical properties of graphene likely can be exploited in a diverse range of technologies including high-speed electronics, chemical and biological sensors and photovoltaics.

These results will be published online May 17 by Nature Chemistry and will be featured on the cover of the June 2009 issue of the journal.

"Graphene has captured the imagination of researchers worldwide due to its superlative and exotic electronic properties," said Mark Hersam, who led the research team. He is professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences.

"However, harnessing these properties requires the development of chemical functionalization strategies that will allow graphene to be seamlessly integrated with other materials that are commonly found in real-world technology," said Hersam. "The stability and uniformity of the chemistry demonstrated here suggest that it can be used as a platform for many device applications."

In addition to Hersam, the other author of the Nature Chemistry paper is Qing Hua Wang, a graduate student in materials science and engineering at Northwestern.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Enabling Graphene-based Technology Via Chemical Functionalization." ScienceDaily. ScienceDaily, 19 May 2009. <www.sciencedaily.com/releases/2009/05/090517143337.htm>.
Northwestern University. (2009, May 19). Enabling Graphene-based Technology Via Chemical Functionalization. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/05/090517143337.htm
Northwestern University. "Enabling Graphene-based Technology Via Chemical Functionalization." ScienceDaily. www.sciencedaily.com/releases/2009/05/090517143337.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins