Featured Research

from universities, journals, and other organizations

New Tool For Next-generation Cancer Treatments Using Nanodiamonds

Date:
May 18, 2009
Source:
Northwestern University
Summary:
A research team at Northwestern University has demonstrated use of a Nanofountain Probe that can precisely deliver tiny doses of drug-carrying nanomaterials to individual cells.

A research team at Northwestern University has demonstrated a tool that can precisely deliver tiny doses of drug-carrying nanomaterials to individual cells.

Related Articles


The tool, called the Nanofountain Probe, functions in two different ways: in one mode, the probe acts like a fountain pen, wherein drug-coated nanodiamonds serve as the ink, allowing researchers to create devices by "writing" with it. The second mode functions as a single-cell syringe, permitting direct injection of biomolecules or chemicals into individual cells.

The research was led by Horacio Espinosa, professor of mechanical engineering, and Dean Ho, assistant professor of mechanical and biomedical engineering, both at the McCormick School of Engineering and Applied Science at Northwestern. Their results were recently published online in the scientific journal Small.

The probe could be used both as a research tool in the development of next-generation cancer treatments and as a nanomanufacturing tool to build the implantable drug delivery devices that will apply these treatments. The potential of nanomaterials to revolutionize drug delivery is emergent in early trials, which show their ability to moderate the release of highly toxic chemotherapy drugs and other therapeutics. This provides a platform for drug-delivery schemes with reduced side effects and improved targeting.

“This is an exciting development that complements our previous demonstrations of direct patterning of DNA, proteins and nanoparticles,” says Espinosa.

Using the Nanofountain Probe, the group injected tiny doses of nanodiamonds into both healthy and cancerous cells. This technique will help cancer researchers investigate the efficacy of new drug-nanomaterial systems as they become available.

The group also used the same Nanofountain Probes to pattern dot arrays of drug-coated nanodiamonds directly on glass substrates. The production of these dot arrays, with dots that can be made smaller than 100 nanometers in diameter, provides the proof of concept by which to manufacture devices that will deliver these nanomaterials within the body.

The work addresses two major challenges in the development and clinical application of nanomaterial-mediated drug-delivery schemes: dosage control and high spatial resolution.

In fundamental research and development, biologists are typically constrained to studying the effects of a drug on an entire cell population because it is difficult to deliver them to a single cell. To address this issue, the team used the Nanofountain Probe to target and inject single cells with a dose of nanodiamonds.

“This allows us to deliver a precise dose to one cell and observe its response relative to its neighbors,” Ho says. “This will allow us to investigate the ultimate efficacy of novel treatment strategies via a spectrum of internalization mechanisms.”

Beyond the broad research focused on developing these drug-delivery schemes, manufacturing devices to execute the delivery will require the ability to precisely place doses of drug-coated nanomaterials. Ho and colleagues previously developed a polymer patch that could be used to deliver chemotherapy drugs locally to sites where cancerous tumors have been removed. This patch is embedded with a layer of drug-coated nanodiamonds, which moderate the release of the drug. The patch is capable of controlled and sustained low levels of release over a period of months, reducing the need for chemotherapy following the removal of a tumor.

“An attractive enhancement will be to use the Nanofountain Probe to replace the continuous drug-nanodiamond films currently used in these devices with patterned arrays composed of multiple drugs,” Ho says. “This allows high-fidelity spatial tuning of dosing in intelligent devices for comprehensive treatment.”

“One of the most significant aspects of this work is the Nanofountain Probe’s ability to deliver nanomaterials coated with a broad range of drugs and other biological agents,” Espinosa says. “The injection technique is currently being explored for delivery of a wide variety of bio-agents, including DNA, viruses and other therapeutically relevant materials.”

Nanodiamonds have also proven effective in seeding the growth of diamond thin films. These diamond films have exciting applications in next-generation nanoelectronics. Here again, the ability to pattern nanodiamonds with sub-100-nanometer resolution provides inroads to realizing these devices on a mass scale. The resolution in nanodiamond patterning demonstrated by the Nanofountain Probe represents an improvement of three orders of magnitude over other reported direct-write schemes of nanodiamond patterning.

The work was supported by the National Science Foundation, the National Institutes of Health, the V Foundation for Cancer Research and the Wallace H. Coulter Foundation.

In addition to Espinosa and Ho, other authors of the paper, entitled “Nanofountain Probe-based High-resolution Patterning and Single-cell Injection of Functionalized Nanodiamonds,” are Owen Loh, Robert Lam, Mark Chen, Nicolaie Moldovan and Houjin Huang of Northwestern University.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "New Tool For Next-generation Cancer Treatments Using Nanodiamonds." ScienceDaily. ScienceDaily, 18 May 2009. <www.sciencedaily.com/releases/2009/05/090518111708.htm>.
Northwestern University. (2009, May 18). New Tool For Next-generation Cancer Treatments Using Nanodiamonds. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2009/05/090518111708.htm
Northwestern University. "New Tool For Next-generation Cancer Treatments Using Nanodiamonds." ScienceDaily. www.sciencedaily.com/releases/2009/05/090518111708.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.S. Ebola Response Measures Demonstrated

U.S. Ebola Response Measures Demonstrated

AP (Oct. 31, 2014) Officials in the Washington area showed off Ebola response measures being taken at Dulles International Airport and the National Institutes of Health. (Oct. 31) Video provided by AP
Powered by NewsLook.com
Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Pot-Infused Edibles Raise Concerns in Colorado

Pot-Infused Edibles Raise Concerns in Colorado

AFP (Oct. 30, 2014) Colorado may have legalized marijuana for recreational use, but the debate around the decision still continues, with a recent - failed - attempt to ban cannabis-infused edibles. Duration: 01:53 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins