Featured Research

from universities, journals, and other organizations

Molecular Pathway Behind Invasive Prostate Cancers

Date:
May 24, 2009
Source:
University of Cincinnati Academic Health Center
Summary:
Cancer and cell biologists have identified a new molecular pathway key to the development of invasive prostate cancers.

University of Cincinnati (UC) cancer and cell biologists have identified a new molecular pathway key to the development of invasive prostate cancers.

In a preclinical study led by Maria Diaz-Meco, PhD, the UC team found that simultaneous inactivation of two particular genes—known as PTEN and Par-4—caused the rapid development of invasive prostate cancer tumors in mice.

"We knew that independent mutations in either of these genes could result in benign tumors, but when those changes occur simultaneously it appears to have a synergistic effect that causes prostate cancer," explains Diaz-Meco, an associate professor of cancer and cell biology at UC and corresponding author of the paper. "This switch affects the cell's ability to both grow and survive, leading to more aggressive and invasive tumors."

"This is an important discovery because—until now—those signaling pathways were not clearly defined. Without a clear molecular target, it's impossible to develop effective drugs to treat this disease without causing harm to the patient," she adds.

Diaz-Meco and her team report their findings online ahead of print in Proceedings of National Academy of Sciences (PNAS) the week of May 18.

PTEN is a well-defined gene shown to be suppressed in prostate cancer tumors, as well as in other types of cancer. Its mutation has been shown to result in the formation of benign tumors. Par-4 gene is also mutated in prostate cancer, but this study is the first to report its relationship with PTEN mutations and aggressive prostate cancer tumor development.

The UC study was done in a laboratory mouse model over the course of two years. Data from the mouse model was correlated and compared to human prostate cancer tissue samples to determine if their findings were applicable in humans as well.

"Theoretically, this new knowledge could be used to better categorize a tumor's aggressiveness by measuring the levels of PTEN and Par-4 expressed in a tissue biopsy," adds Diaz-Meco. "That would help clinicians make tough decisions about how aggressively to treat a patient's prostate cancer and minimize unnecessary treatment."

Cancer and cell biologists are working on identifying the molecular targets involved in cancer progression to develop a better understand the mechanisms of action that lead to prostate cancer so that pharmaceutical companies and clinicians can develop better methods of diagnosing and treating the disease.

Funding for this study comes from the National Cancer Institute and National Institutes of Health. Coauthors of the study include UC's Shadi Abu-Baker, Jayashree Joshi, Anita Galvez, Elias Castilla, and Jorge Moscat, PhD. Spanish National Cancer Research Center's scientists Pablo Fernandez-Marcos, Marta Canamero, Manuel Collado, Gema Moreno-Bueno and Manuel Serrano and Carmen Saez of the Biotechnology Centre of Oslo in Norway also contributed to the study.


Story Source:

The above story is based on materials provided by University of Cincinnati Academic Health Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati Academic Health Center. "Molecular Pathway Behind Invasive Prostate Cancers." ScienceDaily. ScienceDaily, 24 May 2009. <www.sciencedaily.com/releases/2009/05/090518172652.htm>.
University of Cincinnati Academic Health Center. (2009, May 24). Molecular Pathway Behind Invasive Prostate Cancers. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2009/05/090518172652.htm
University of Cincinnati Academic Health Center. "Molecular Pathway Behind Invasive Prostate Cancers." ScienceDaily. www.sciencedaily.com/releases/2009/05/090518172652.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins