Featured Research

from universities, journals, and other organizations

New Solid Oxide Fuel Cell Seal Could Help Bring Efficient Energy Technology To Market

Date:
May 25, 2009
Source:
Virginia Tech
Summary:
Solid oxide fuel cells (SOFCs) have great potential for stationary and mobile applications. Stationary use ranges from residential applications to power plants. Mobile applications include power for ships at sea and in space, as well as for autos. In addition to electricity, when SOFCs are operated in reverse mode as solid oxide electrolyzer cells, pure hydrogen can be generated by splitting water.

This drawing shows the placement of the glass seals in the solid oxide fuel cells.
Credit: Image courtesy of Virginia Tech

Solid oxide fuel cells (SOFCs) have great potential for stationary and mobile applications. Stationary use ranges from residential applications to power plants. Mobile applications include power for ships at sea and in space, as well as for autos. In addition to electricity, when SOFCs are operated in reverse mode as solid oxide electrolyzer cells, pure hydrogen can be generated by splitting water.

But SOFCs have had a flaw – the integrity of the seals within and between power-producing units. "The seal problem is the biggest problem for commercialization of solid oxide fuel cells," said Peizhen (Kathy) Lu, assistant professor of materials science and engineering at Virginia Tech.

So she has invented a solution.

Composed of ceramic materials that can operate at temperatures as high as 1,800 degrees F (1,000 C), SOFCs use high temperature to separate oxygen ions from air. The ions pass through a crystal lattice and oxidize a fuel– usually a hydrocarbon. The chemical reaction produces electrons, which flow through an external circuit, creating electricity.

To produce enough energy for a particular application, SOFC modules are stacked together. Each module has air on one side and a fuel on the other side and produces electrons. Many modules are stacked together to produce enough power for specific applications. Each module's compartments must be sealed, and there must be seals between the modules in a stack so that air and fuel do not leak or mix, resulting in a loss of efficiency or internal combustion.

Lu has invented a new glass that can be used to seal the modules and the stack. The self-healing seal glass will provide strength and long-term stability to the stack, she said.

The U.S. Department of Energy has funded Lu's SOFC and solid oxide elecrolyzer cell research to the tune of $365,000 so far. "For solid oxide fuel cells to run, we need to have a fuel. Hydrogen is the cleanest fuel you can ever have since the by-product is water. However, there is no abundant source of hydrogen and it has to be made. The solid oxide elecrolyzer cell process for splitting water into hydrogen and oxygen is one very desirable way of doing it," Lu said.

"Our interest is to work on the critical material problems to enable power generation and hydrogen production in large quantity and low cost," said Lu, whose expertise includes material design and material synthesis and processing.

"The invented glass seal materials are free of barium oxide, calcium oxide, magnesia, and alkali oxides, and in addition contain almost imperceptibly low amounts of boron oxide," said Mike Miller senior licensing manager with Virginia Tech Intellectual Properties. "This is important because the seals must be both mechanically and chemically compatible with the different oxide and metallic cell components as they are repeatedly cycled between room and operating temperatures,” said Miller.

An article relevant to her research, which appeared in the Oct. 6, 2008 issue of the Journal of Applied Physics is “Network structure and thermal stability study of high temperature seal glass,” by Lu and Virginia Tech materials science and engineering doctoral student M. K. Mahapatra of Egra, Purba Medinipur, India.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "New Solid Oxide Fuel Cell Seal Could Help Bring Efficient Energy Technology To Market." ScienceDaily. ScienceDaily, 25 May 2009. <www.sciencedaily.com/releases/2009/05/090521184437.htm>.
Virginia Tech. (2009, May 25). New Solid Oxide Fuel Cell Seal Could Help Bring Efficient Energy Technology To Market. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/05/090521184437.htm
Virginia Tech. "New Solid Oxide Fuel Cell Seal Could Help Bring Efficient Energy Technology To Market." ScienceDaily. www.sciencedaily.com/releases/2009/05/090521184437.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins