Featured Research

from universities, journals, and other organizations

New Mouse Model Provides Insight Into Genetic Neurological Disorders

Date:
May 27, 2009
Source:
The Company of Biologists
Summary:
Neurosensory diseases are difficult to model in mice because their symptoms are complex and diverse. The genetic causes identified are often lethal when transferred to a mouse. The lack of animal models slows progress in understanding and treating the diseases. By strategically altering a protein-making molecule, a mouse was made to help understand nervous system diseases that impair feeling and cause paralysis of the arms and legs in humans.

Neurosensory diseases are difficult to model in mice because their symptoms are complex and diverse. The genetic causes identified are often lethal when transferred to a mouse. The lack of animal models slows progress in understanding and treating the diseases. By strategically altering a protein-making molecule, a mouse was made to help understand nervous system diseases that impair feeling and cause paralysis of the arms and legs in humans.

Related Articles


Scientists have created a mouse to help understand human neuronal diseases that impair a patient's ability to feel and to move their arms and legs. By strategically altering a protein-making molecule, a mouse was made with symptoms similar to the nervous system diseases, Charcot-Marie-Tooth (CMT) and hereditary motor neuropathy (HMN). In CMT and HMN, neurons that signal and maintain muscle cells become defective, which causes weakening and loss of muscle that is significant enough in some cases to lead to death. The symptoms become progressively worse over time and no effective treatments or cures exist for these diseases. Researchers came together from the University College London (UCL), the Medical Research Centre (MRC) Harwell, the University of Oxford, and the University of London in England, Vrije University in The Netherlands and Jackson Laboratories in the US to make a genetic change in mice that has been associated with CMT and HMN diseases in people.

Neurosensory diseases are difficult to model in mice because they involve symptoms that are complex and diverse. These diseases are passed from parents to their children but the genetic causes identified are often lethal when transferred to a mouse. The lack of animal models slows progress in understanding and treating the diseases.

The researchers made a mutation in a protein, which is part of the protein building machinery, called glycyl-tRNA synthetase (GARS). As described in their study in Disease Models & Mechanisms (DMM),

When the researchers made the same mutation in two different breeds of mice it caused two distinguishable sets of symptoms, demonstrating that the genetic background influences the effects of the GARS gene mutation. This variability in the mouse disease symptoms is also seen in humans, and may help shed light on how CMT and HMN differently affect individual patients' symptoms.

The report titled "An ENU-induced mutation in mouse glycyl tRNA synthetase (Gars) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy" was written by Francesca Achilli, Virginie Bros Facer, Hazel Williams, Gareth Banks, Mona AlQatari, Ruth Chia, Michael Groves, Sebastian Brandner, Martin Koltzenburg, Linda Greensmith, and Elizabeth M.C. Fisher at the University College London (UCL), Valter Tucci, Rachel Kendall and Patrick Nolan at the Medical Research Centre (MRC) Harwell, Carole Nickols and Joanne Martin at Queen Mary University of London, Kevin Seburn and Robert Burgess at Jackson Laboratories, Muhammed Cader and Kevin Talbot at the University of Oxford, and Jan van Minnen at Vrije University. The study is published in the June/July issue of the new research journal, Disease Models & Mechanisms (DMM), published by The Company of Biologists, a non-profit based in Cambridge, UK.


Story Source:

The above story is based on materials provided by The Company of Biologists. Note: Materials may be edited for content and length.


Journal Reference:

  1. Achilli et al. An ENU-induced mutation in mouse glycyl tRNA synthetase (Gars) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Disease Models & Mechanisms, 2009; DOI: 10.1242/dmm.002527

Cite This Page:

The Company of Biologists. "New Mouse Model Provides Insight Into Genetic Neurological Disorders." ScienceDaily. ScienceDaily, 27 May 2009. <www.sciencedaily.com/releases/2009/05/090526093934.htm>.
The Company of Biologists. (2009, May 27). New Mouse Model Provides Insight Into Genetic Neurological Disorders. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/05/090526093934.htm
The Company of Biologists. "New Mouse Model Provides Insight Into Genetic Neurological Disorders." ScienceDaily. www.sciencedaily.com/releases/2009/05/090526093934.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins