Featured Research

from universities, journals, and other organizations

Biomimetic-engineering Design Can Replace Spaghetti Tangle Of Nanotubes In Novel Material

Date:
June 5, 2009
Source:
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering
Summary:
Nanoelectromechanical systems devices have the potential to revolutionize the world of sensors: motion, chemical, etc. But taking electromechanical devices from the micro scale down to the nano requires finding a means to dissipate heat output. Researchers say the solution is to build these devices using a thermal material that dissipates heat from the device's center through a hierarchical branched network of carbon nanotubes. The template for this thermal material's design: a living cell.

The figure illustrates a hierarchical network of carbon nanotubes mimicking the protein network in a living cell to connect a small heat source (red area) to a larger area that serves as a heat sink.
Credit: Graphic / Markus Buehler, MIT

Nanoelectromechanical systems (NEMS) devices have the potential to revolutionize the world of sensors: motion, chemical, temperature, etc. But taking electromechanical devices from the micro scale down to the nano requires finding a means to dissipate the heat output of this tiny gadgetry.

In a paper appearing in the March 26 issue of Nano Letters, Professor Markus Buehler and postdoctoral associate Zhiping Xu of MIT’s Department of Civil and Environmental Engineering say the solution is to build these devices using a thermal material that naturally dissipates heat from the device’s center through a hierarchical branched network of carbon nanotubes. The template for this thermal material’s design is a living cell, specifically, the hierarchical protein networks that allow a cell’s nucleus to communicate with the cell’s outermost regions.

“The structure now used when designing materials with carbon nanotubes resembles spaghetti,” said Buehler, who studies protein-based materials at the nano and atomistic scales with the goal of using biomimetic-engineering principles to design human-made materials. “We show that a precise arrangement of carbon nanotubes similar to those found in the cytoskeleton of cells will create a thermal material that effectively dissipates heat, which could prevent a NEMS device from failing or melting.”

NEMS devices are characterized by extremely small, high-density heat sources that can’t be cooled by traditional means. Even the microelectromechanical systems (MEMS) devices used in automobiles and electronics are hard to cool, because conventional thermal management strategies such as fans, fluids, pastes and wiring often don’t work at these small scales; heat buildup in MEMS frequently leads to catastrophic device failure, which limits the reliability of larger systems.

But the number of heat-conducting fibers or carbon nanotubes (CNTs) that can be connected to the heat source at the center of a NEMS device is limited by the physical size of the heat source itself. Buehler and Xu demonstrate that a simple geometric structure — a branched-tree hierarchy of at least two branches sprouting off each branch — is far more effective at heat dissipation than the non-hierarchical “spaghetti” of most existing CNT-based material.

They show that a single fiber (or branch) connected to the heat source, with 99 additional branched links between it and the heat sink, will provide the same dissipation effect as if 50 long fibers were connected directly to the heat source. If five carbon nanotubes are arranged in direct connection to the heat source, each of which uses this branched-tree hierarchical structure, the heat dissipation will be the equivalent of 250 direct connections from the heat source to an external heat sink.

“Our paper provides a breakthrough in the understanding of how nanostructural elements can be utilized effectively to bridge scales from the nano to macro through formation of hierarchical structures,” said Xu. “The results could change the way nanodevices are designed and fabricated by enabling technological innovations for highly integrated systems.”

This research is funded by DARPA (the U.S. Defense Advanced Research Projects Agency) and the MIT Energy Initiative.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. "Biomimetic-engineering Design Can Replace Spaghetti Tangle Of Nanotubes In Novel Material." ScienceDaily. ScienceDaily, 5 June 2009. <www.sciencedaily.com/releases/2009/06/090601121708.htm>.
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. (2009, June 5). Biomimetic-engineering Design Can Replace Spaghetti Tangle Of Nanotubes In Novel Material. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2009/06/090601121708.htm
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. "Biomimetic-engineering Design Can Replace Spaghetti Tangle Of Nanotubes In Novel Material." ScienceDaily. www.sciencedaily.com/releases/2009/06/090601121708.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins