Featured Research

from universities, journals, and other organizations

New Exotic Material Could Revolutionize Electronics

Date:
June 16, 2009
Source:
DOE/SLAC National Accelerator Laboratory
Summary:
Move over, silicon -- it may be time to give the Valley a new name. Physicists have confirmed the existence of a type of material that could one day provide dramatically faster, more efficient computer chips.

Surface electron band structure of bismuth telluride.
Credit: Image courtesy of Yulin Chen and Z. X. Shen

Move over, silicon—it may be time to give the Valley a new name. Physicists at the Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have confirmed the existence of a type of material that could one day provide dramatically faster, more efficient computer chips.

Related Articles


Recently-predicted and much-sought, the material allows electrons on its surface to travel with no loss of energy at room temperatures and can be fabricated using existing semiconductor technologies. Such material could provide a leap in microchip speeds, and even become the bedrock of an entirely new kind of computing industry based on spintronics, the next evolution of electronics.

Physicists Yulin Chen, Zhi-Xun Shen and their colleagues tested the behavior of electrons in the compound bismuth telluride. The results, published online June 11 in Science Express, show a clear signature of what is called a topological insulator, a material that enables the free flow of electrons across its surface with no loss of energy.

The discovery was the result of teamwork between theoretical and experimental physicists at the Stanford Institute for Materials & Energy Science, a joint SLAC-Stanford institute. In recent months, SIMES theorist Shoucheng Zhang and colleagues predicted that several bismuth and antimony compounds would act as topological insulators at room-temperature. The new paper confirms that prediction in bismuth telluride. "The working style of SIMES is perfect," Chen said. "Theorists, experimentalists, and sample growers can collaborate in a broad sense."

The experimenters examined bismuth telluride samples using X-rays from the Stanford Synchrotron Radiation Lightsource at SLAC and the Advanced Light Source at Lawrence Berkeley National Laboratory. When Chen and his colleagues investigated the electrons' behavior, they saw the clear signature of a topological insulator. Not only that, the group discovered that the reality of bismuth telluride was even better than theory.

"The theorists were very close," Chen said, "but there was a quantitative difference." The experiments showed that bismuth telluride could tolerate even higher temperatures than theorists had predicted. "This means that the material is closer to application than we thought," Chen said.

This magic is possible thanks to surprisingly well-behaved electrons. The quantum spin of each electron is aligned with the electron's motion—a phenomenon called the quantum spin Hall effect. This alignment is a key component in creating spintronics devices, new kinds of devices that go beyond standard electronics. "When you hit something, there's usually scattering, some possibility of bouncing back," explained theorist Xiaoliang Qi. "But the quantum spin Hall effect means that you can't reflect to exactly the reverse path." As a dramatic consequence, electrons flow without resistance. Put a voltage on a topological insulator, and this special spin current will flow without heating the material or dissipating.

Topological insulators aren't conventional superconductors nor fodder for super-efficient power lines, as they can only carry small currents, but they could pave the way for a paradigm shift in microchip development. "This could lead to new applications of spintronics, or using the electron spin to carry information," Qi said. "Whether or not it can build better wires, I'm optimistic it can lead to new devices, transistors, and spintronics devices."

Fortunately for real-world applications, bismuth telluride is fairly simple to grow and work with. Chen said, "It's a three-dimensional material, so it's easy to fabricate with the current mature semiconductor technology. It's also easy to dope—you can tune the properties relatively easily."

"This is already a very exciting thing," he said, adding that the material "could let us make a device with new operating principles."

The high quality bismuth telluride samples were grown at SIMES by James Analytis, Ian Fisher and colleagues.

SIMES, the Stanford Synchrotron Radiation Lightsource at SLAC, and the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Office of Basic Energy Sciences within the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chen et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 2009; DOI: 10.1126/science.1173034

Cite This Page:

DOE/SLAC National Accelerator Laboratory. "New Exotic Material Could Revolutionize Electronics." ScienceDaily. ScienceDaily, 16 June 2009. <www.sciencedaily.com/releases/2009/06/090615144431.htm>.
DOE/SLAC National Accelerator Laboratory. (2009, June 16). New Exotic Material Could Revolutionize Electronics. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2009/06/090615144431.htm
DOE/SLAC National Accelerator Laboratory. "New Exotic Material Could Revolutionize Electronics." ScienceDaily. www.sciencedaily.com/releases/2009/06/090615144431.htm (accessed October 24, 2014).

Share This



More Computers & Math News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins