Featured Research

from universities, journals, and other organizations

Lasers Can Lengthen Quantum Bit Memory By 1,000 Times

Date:
June 25, 2009
Source:
University of Michigan
Summary:
Physicists have found a way to drastically prolong the shelf life of quantum bits, the 0s and 1s of quantum computers.

Physicists have found a way to drastically prolong the shelf life of quantum bits, the 0s and 1s of quantum computers.

These precarious bits, formed in this case by arrays of semiconductor quantum dots containing a single extra electron, are easily perturbed by magnetic field fluctuations from the nuclei of the atoms creating the quantum dot. This perturbation causes the bits to essentially forget the piece of information they were tasked with storing.

A quantum dot is a semiconductor nanostructure that is one candidate for creating quantum bits.

The scientists, including the University of Michigan's Duncan Steel, used lasers to elicit a previously undiscovered natural feedback reaction that stabilizes the quantum dot's magnetic field, lengthening the stable existence of the quantum bit by several orders of magnitude, or more than 1,000 times.

Because of their ability to represent multiple states simultaneously, quantum computers could theoretically factor numbers dramatically faster and with smaller computers than conventional computers. For this reason, they could vastly improve computer security.

"In our approach, the quantum bit for information storage is an electron spin confined to a single dot in a semiconductor like indium arsenide. Rather than representing a 0 or a 1 as a transistor does in a classical computer, a quantum bit can be a linear combination of 0 and 1. It's sort of like hitting two piano keys at the same time," said Steel, a professor in the Department of Physics and the Robert J. Hiller Professor of Electrical Engineering and Computer Science.

"One of the serious problems in quantum computing is that anything that disturbs the phase of one of these spins relative to the other causes a loss of coherence and destroys the information that was stored. It is as though one of the two notes on the piano is silenced, leaving only the other note."

Spin is an intrinsic property of the electron that isn't rotation, but is more like magnetic poles. Electrons are said to have spin up or down, which represent the 0s and 1s.

A major cause of information loss in a popular class of semiconductors called 3/5 materials is the interaction of the electron (the quantum bit) with the nuclei of the atoms in the quantum dot holding the electron. Trapping the electron in a particular spin, as is necessary in quantum computers, gives rise to a small magnetic field that couples with the magnetic field in the nuclei and breaks down the memory in a few billionths of a second.

By exciting the quantum dot with a laser, the scientists were able to block the interaction of these magnetic fields. The laser causes an electron in the quantum dot to jump to a higher energy level, leaving behind a charged hole in the electron cloud. This hole, or space vacated by an electron, also has a magnetic field due to the collective spin of the remaining electron cloud. It turns out that the hole acts directly with the nuclei and controls its magnetic field without any intervention from outside except the fixed excitation by the lasers to create the hole.

"This discovery was quite unexpected," Steel said. "Naturally occurring, nonlinear feedback in physical systems is rarely observed. We found a remarkable piece of physics in nature. We still have other major technical obstacles, but our work shows that one of the major hurdles to quantum computers that we thought might be a show-stopper isn't one," Steel said.

Other authors are with the Naval Research Laboratory, the University of California San Diego, and the University of Hong Kong. The research is funded by the U.S. Army Research Office, the Air Force Office of Scientific Research, the Office of Naval Research, The National Security Agency's Laboratory for Physical Sciences, the Intelligence Advanced Research Projects Agency and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Optically-controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature, June 25, 2009

Cite This Page:

University of Michigan. "Lasers Can Lengthen Quantum Bit Memory By 1,000 Times." ScienceDaily. ScienceDaily, 25 June 2009. <www.sciencedaily.com/releases/2009/06/090624152824.htm>.
University of Michigan. (2009, June 25). Lasers Can Lengthen Quantum Bit Memory By 1,000 Times. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/06/090624152824.htm
University of Michigan. "Lasers Can Lengthen Quantum Bit Memory By 1,000 Times." ScienceDaily. www.sciencedaily.com/releases/2009/06/090624152824.htm (accessed October 22, 2014).

Share This



More Computers & Math News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins