Featured Research

from universities, journals, and other organizations

New Mechanism For Amyloid Beta Protein's Toxic Impact On The Alzheimer's Brain

Date:
July 6, 2009
Source:
Cell Press
Summary:
Scientists have uncovered a novel mechanism linking soluble amyloid b protein with the synaptic injury and memory loss associated with Alzheimer's disease (AD). The research provides critical new insight into disease pathogenesis and reveals signaling molecules that may serve as potential additional therapeutic targets for AD.

Scientists have uncovered a novel mechanism linking soluble amyloid ? protein with the synaptic injury and memory loss associated with Alzheimer's disease (AD). The research, published in the June 25 issue of the journal Neuron, provides critical new insight into disease pathogenesis and reveals signaling molecules that may serve as potential additional therapeutic targets for AD.

Amyloid ? protein (A?) plays a major pathogenic role in AD, a devastating neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. "Given the mounting evidence that small soluble A? assemblies mediate synaptic impairment in AD, elucidating the precise molecular pathways by which this occurs has important implications for treating and preventing the disease," explains senior study author, Dr. Dennis Selkoe from the Center for Neurologic Diseases at Brigham and Women's Hospital and Harvard Medical School.

Dr. Selkoe, Dr. Shaomin Li, and colleagues examined regulation of a cellular communication phenomenon known as long-term synaptic depression (LTD). LTD has been linked with neuronal degeneration, but a role for A? in the regulation of LTD has not been clearly described. The researchers found that soluble A? facilitated LTD in the hippocampus, a region of the brain intimately associated with memory. The enhanced synaptic depression induced by soluble A? was mediated through a decrease in glutamate recycling at hippocampal synapses.

Excess glutamate, the major excitatory neurotransmitter in the brain, is thought to contribute to the progressive neuronal loss characteristic of AD. The researchers went on to show that A?-enhanced LTD was mediated by glutamate receptor activity and that the LTD could be prevented by an extracellular glutamate scavenger system. A very similar enhancement of LTD could be induced by a pharmacological blocker of glutamate reuptake. Importantly, soluble A? directly and significantly decreased glutamate uptake by isolated synapses.

"Our findings provide evidence that soluble A? from several sources enhances synaptic depression through a novel mechanism involving altered glutamate uptake at hippocampal synapses," concludes Dr. Selkoe. "These results have both mechanistic and therapeutic implications for the initiation of hippocampal synaptic failure in AD and in more subtle forms of age-related A? accumulation." Future studies are needed to determine precisely how soluble A? protein physically interferes with glutamate transporters at the synapse.

The researchers include Shaomin Li, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Soyon Hong, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Nina E. Shepardson, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Dominic M. Walsh, University College Dublin, Dublin, Ireland; Ganesh M. Shankar, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Dennis Selkoe, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "New Mechanism For Amyloid Beta Protein's Toxic Impact On The Alzheimer's Brain." ScienceDaily. ScienceDaily, 6 July 2009. <www.sciencedaily.com/releases/2009/06/090624153100.htm>.
Cell Press. (2009, July 6). New Mechanism For Amyloid Beta Protein's Toxic Impact On The Alzheimer's Brain. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/06/090624153100.htm
Cell Press. "New Mechanism For Amyloid Beta Protein's Toxic Impact On The Alzheimer's Brain." ScienceDaily. www.sciencedaily.com/releases/2009/06/090624153100.htm (accessed April 17, 2014).

Share This



More Mind & Brain News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Newsy (Apr. 16, 2014) A new study by British researchers suggests couples' sleeping positions might reflect their happiness. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins