Featured Research

from universities, journals, and other organizations

Uncovering How Cells Cover Gaps In Wound Healing And Embryonic Development

Date:
July 1, 2009
Source:
European Molecular Biology Laboratory (EMBL)
Summary:
Researchers have come a step closer to understanding how cells close gaps not only during embryonic development but also during wound healing. Their study uncovers a fundamental misconception in the previous explanation for a developmental process called dorsal closure.

The microscope image of the dorsal closure of a fly embryo shows alter- nating stripes of epithelial cells with aligned microtubule bundles (green) and epithelial cells treated with a microtubule-destroying drug (blue). Labelled in red is the protein actin that lines the border of cells, particularly the amnioserosa cells occupying the eye-shaped opening.
Credit: Image courtesy of European Molecular Biology Laboratory (EMBL)

Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, came a step closer to understanding how cells close gaps not only during embryonic development but also during wound healing. Their study, published in the journal Cell, uncovers a fundamental misconception in the previous explanation for a developmental process called dorsal closure.

Related Articles


Scientists study dorsal closure, which occurs during the development of the fruit fly Drosophila melanogaster, to gain insights into wound healing in humans, as both processes involve closing a gap in the skin by stretching the surrounding epithelial cells over it.

Dorsal closure involves three entities: the cells that fill the gap, called amnioserosa cells, a cable of the protein actin which runs around the gap, and the epithelial cells that eventually stretch over and seal the gap.Until now, scientists believed dorsal closure started when some unknown signal made the amnioserosa cells and the actin cable contract. The actin cable would then act like the drawstring on a purse together with the gradually contracting amnioserosa cells, it would pull the epithelial cells together until the gap was closed.

By taking more pictures per minute researchers in Damian Brunner's group at EMBL improved the time resolution of the movies generally used to study this process, and made an important observation. They found that amnioserosa cells pulse throughout their life, constantly contracting and relaxing their surfaces.With each contraction they transiently pull on the surrounding epithelial cells, and then relax, letting them go.

By combining their movies with computer simulations, Aynur Kaya and Jerome Solon in Brunner's group discovered that the actin cable doesn't act as a drawstring, but rather as a ratchet. With every force pulse of the amnioserosa cells, the actin cable contracts and stops the epithelial cells from moving back away from the gap when the amnioserosa cells relax. This ratchetlike action means epithelial cells can move in only one direction: over the gap, bringing about dorsal closure. “Essentially, you have a field of cells that creates the driving force,” Damian summarises, “and then you need to translate this force into movement by adding ratchets that lock the cells into the state where they should move”.

The researchers believe this mechanism could apply not only to dorsal closure and wound healing, but also to many developing tissues, since moving tissue around is central to development.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory (EMBL). Note: Materials may be edited for content and length.


Journal Reference:

  1. Solon J, Kaya A, Colombelli J, Brunner D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during Drosophila melanogaster morphogenesis. Cell, 26 June 2009

Cite This Page:

European Molecular Biology Laboratory (EMBL). "Uncovering How Cells Cover Gaps In Wound Healing And Embryonic Development." ScienceDaily. ScienceDaily, 1 July 2009. <www.sciencedaily.com/releases/2009/06/090626084427.htm>.
European Molecular Biology Laboratory (EMBL). (2009, July 1). Uncovering How Cells Cover Gaps In Wound Healing And Embryonic Development. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/06/090626084427.htm
European Molecular Biology Laboratory (EMBL). "Uncovering How Cells Cover Gaps In Wound Healing And Embryonic Development." ScienceDaily. www.sciencedaily.com/releases/2009/06/090626084427.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins