Featured Research

from universities, journals, and other organizations

Blackest Black Ever: Ultra-thin Material Absorbs Almost 100% Of Light

Date:
July 2, 2009
Source:
Leiden University
Summary:
It appears to be a paradox: ultra-thin material that absorbs all incident light. Nonetheless, it does exist. Researchers have demonstrated that at a thickness of 4.5 nanometer niobiumnitride (NbN) is ultra-absorbent. They have recorded a light absorption of almost 100%, while the best light absorption to date was 50%. This research brings the ideal light detector a step closer.

How much light is reflected and how much is absorbed depends on two factors: the angle at which the light falls onto the material, and the polarisation (the direction of oscillation) of the light.
Credit: Image courtesy of Leiden University

It appears to be a paradox: ultra-thin material that absorbs all the incident light. Nonetheless, it does exist.

Ideal light detector

Two researchers, Eduard Driessen, MSc, and Dr Michiel de Dood, have demonstrated that at a thickness of 4.5 nanometer niobiumnitride (NbN) is ultra-absorbent. They have recorded a light absorption of almost 100%, while the best light absorption to date was 50%. This research brings the ideal light detector a step closer.

A cell made of this material can already collect light and convert it into an electrical signal. The high number of downloads indicates that this research is very special.

Angles and polarisation

Materials that could potentially absorb a lot of light have the problem that they reflect the incident light; they are generally very good mirrors. But how much light is reflected and how much is absorbed depends on two factors: the angle at which the light falls onto the material, and the polarisation (the direction of oscillation) of the light. Light has two kinds of polarisation: s and p polarisation.

Polaroid sunglasses make good use of this characteristic. The light absorption of a thin slice of NbN is at its maximum if the light falls on it at an angle of 35 and only consists of s-polarised light. The absorption achieved is then 94%. The p-polarised light is reflected in full. At an angle of 46 the absorption for both polarisation directions is 80%, which is still extremely good.

Applications

This discovery gave Driessen and De Dood the idea for building a special detector. They want to use this detector to view individual light particles, photons. To date this has been very difficult because the absorption was not high enough. The most important part of the detector is a lattice of ultra-absorbent NbN filaments. When an s-light particle falls on the lattice, it is absorbed. A p-particle is reflected. This p-particle can then in turn be collected by a second detector so that all the light is detected.

Calculations show that the wavelength (colour) of the light particle has hardly any influence. The detector can therefore also be used for particles with completely different wavelengths, such as detection systems for telecommunications and infra-red equipment.

The research is being carried out in collaboration with the TU Delft and will be part-funded by the Netherlands Organisation for Scientific Research (NWO) and the Foundation for Fundamental Materials Research (FOM).


Story Source:

The above story is based on materials provided by Leiden University. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. F. C. Driessena and M. J. A. de Dood. The perfect absorber. Applied Physics Letters, Online April 29, 2009 DOI: 10.1063/1.3126062

Cite This Page:

Leiden University. "Blackest Black Ever: Ultra-thin Material Absorbs Almost 100% Of Light." ScienceDaily. ScienceDaily, 2 July 2009. <www.sciencedaily.com/releases/2009/06/090630082647.htm>.
Leiden University. (2009, July 2). Blackest Black Ever: Ultra-thin Material Absorbs Almost 100% Of Light. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/06/090630082647.htm
Leiden University. "Blackest Black Ever: Ultra-thin Material Absorbs Almost 100% Of Light." ScienceDaily. www.sciencedaily.com/releases/2009/06/090630082647.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins