Featured Research

from universities, journals, and other organizations

Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated

Date:
July 15, 2009
Source:
DOE/Savannah River National Laboratory
Summary:
Researchers have created a reversible route to generate aluminum hydride, a high capacity hydrogen storage material. This achievement is not only expected to accelerate the development of a whole class of storage materials, but also has far reaching applications in areas spanning energy technology and synthetic chemistry.

Researchers at the U.S. Department of Energy's Savannah River National Laboratory have created a reversible route to generate aluminum hydride, a high capacity hydrogen storage material. This achievement is not only expected to accelerate the development of a whole class of storage materials, but also has far reaching applications in areas spanning energy technology and synthetic chemistry.

Related Articles


"We believe our research has provided a feasible route to regenerate aluminum hydride, a high capacity hydrogen storage material," says Dr. Ragaiy Zidan of SRNL, lead researcher on the project. The SRNL team, supported by the DOE Office of Energy Efficiency and Renewable Energy, has developed a novel closed cycle for producing aluminum hydride (AlH3), also known as alane, that potentially offers a cost-effective method of regenerating the hydrogen storing material in a way that allows it to repeatedly release and recharge its hydrogen. In this process, the hydride is made via an electrochemical method, and the starting material is regenerated directly with hydrogen. Although many attempts have been made in the past to make alane electrochemically, none of these previous attempts were totally successful.

For years, one of the major obstacles to the realization of the hydrogen economy is hydrogen storage. Solid-state storage, using solid materials such as metals that absorb hydrogen and release it as needed, has many safety and practicality advantages over storing hydrogen as a liquid or gas, and many storage materials have been examined trying to meet DOE's goals. Several materials have been discovered that have met or exceeded the DOE gravimetric and/or volumetric performance targets. Of those, however, the majority do not have the required thermodynamic and kinetic properties that allow them to release their hydrogen when needed, and be efficiently and economically reloaded with hydrogen when spent.

Alane possesses the desired qualities, but had been considered impractical because of the high pressures required to combine hydrogen and aluminum to reform the hydride material. Alternate methods of production using chemical synthesis have typically produced stable metal chloride byproducts that make it practically impossible to regenerate the alane. The electrochemical cycle demonstrated by Dr. Zidan and the SRNL team for production of alane avoids both of these issues.

In conjunction with this research, the SRNL team discovered novel ways to facilitate separation and formation of aluminum hydride that also apply to the formation of other complex metal hydrides and have the potential to cost-effectively regenerate other high capacity hydrogen storage materials. The SRNL results are expected to accelerate the development of a whole class of similar materials needed for hydrogen, batteries and other energy storage applications.

In addition, this work will significantly impact other fields including those of thin films, adduct based syntheses, and the recycling and regeneration of other materials.

The research is reported in an article published in Chem. Commun., 2009, a publication of the Royal Society of Chemistry. The work was supported by a grant from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by DOE/Savannah River National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Savannah River National Laboratory. "Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated." ScienceDaily. ScienceDaily, 15 July 2009. <www.sciencedaily.com/releases/2009/07/090706112904.htm>.
DOE/Savannah River National Laboratory. (2009, July 15). Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/07/090706112904.htm
DOE/Savannah River National Laboratory. "Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated." ScienceDaily. www.sciencedaily.com/releases/2009/07/090706112904.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins