Featured Research

from universities, journals, and other organizations

Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated

Date:
July 15, 2009
Source:
DOE/Savannah River National Laboratory
Summary:
Researchers have created a reversible route to generate aluminum hydride, a high capacity hydrogen storage material. This achievement is not only expected to accelerate the development of a whole class of storage materials, but also has far reaching applications in areas spanning energy technology and synthetic chemistry.

Researchers at the U.S. Department of Energy's Savannah River National Laboratory have created a reversible route to generate aluminum hydride, a high capacity hydrogen storage material. This achievement is not only expected to accelerate the development of a whole class of storage materials, but also has far reaching applications in areas spanning energy technology and synthetic chemistry.

"We believe our research has provided a feasible route to regenerate aluminum hydride, a high capacity hydrogen storage material," says Dr. Ragaiy Zidan of SRNL, lead researcher on the project. The SRNL team, supported by the DOE Office of Energy Efficiency and Renewable Energy, has developed a novel closed cycle for producing aluminum hydride (AlH3), also known as alane, that potentially offers a cost-effective method of regenerating the hydrogen storing material in a way that allows it to repeatedly release and recharge its hydrogen. In this process, the hydride is made via an electrochemical method, and the starting material is regenerated directly with hydrogen. Although many attempts have been made in the past to make alane electrochemically, none of these previous attempts were totally successful.

For years, one of the major obstacles to the realization of the hydrogen economy is hydrogen storage. Solid-state storage, using solid materials such as metals that absorb hydrogen and release it as needed, has many safety and practicality advantages over storing hydrogen as a liquid or gas, and many storage materials have been examined trying to meet DOE's goals. Several materials have been discovered that have met or exceeded the DOE gravimetric and/or volumetric performance targets. Of those, however, the majority do not have the required thermodynamic and kinetic properties that allow them to release their hydrogen when needed, and be efficiently and economically reloaded with hydrogen when spent.

Alane possesses the desired qualities, but had been considered impractical because of the high pressures required to combine hydrogen and aluminum to reform the hydride material. Alternate methods of production using chemical synthesis have typically produced stable metal chloride byproducts that make it practically impossible to regenerate the alane. The electrochemical cycle demonstrated by Dr. Zidan and the SRNL team for production of alane avoids both of these issues.

In conjunction with this research, the SRNL team discovered novel ways to facilitate separation and formation of aluminum hydride that also apply to the formation of other complex metal hydrides and have the potential to cost-effectively regenerate other high capacity hydrogen storage materials. The SRNL results are expected to accelerate the development of a whole class of similar materials needed for hydrogen, batteries and other energy storage applications.

In addition, this work will significantly impact other fields including those of thin films, adduct based syntheses, and the recycling and regeneration of other materials.

The research is reported in an article published in Chem. Commun., 2009, a publication of the Royal Society of Chemistry. The work was supported by a grant from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by DOE/Savannah River National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Savannah River National Laboratory. "Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated." ScienceDaily. ScienceDaily, 15 July 2009. <www.sciencedaily.com/releases/2009/07/090706112904.htm>.
DOE/Savannah River National Laboratory. (2009, July 15). Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/07/090706112904.htm
DOE/Savannah River National Laboratory. "Reversible Generation Of High Capacity Hydrogen Storage Material Demonstrated." ScienceDaily. www.sciencedaily.com/releases/2009/07/090706112904.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins