Featured Research

from universities, journals, and other organizations

Hitting Cell Hot Spot Could Help Thwart Parkinson's Disease

Date:
July 9, 2009
Source:
University of Manchester
Summary:
A new way to 'turn off the taps' in the brain and stop a chemical being released in excess amounts -- which can lead to Parkinson's Disease -- has been developed.

The latest work to 'turn off the taps' in the brain and stop a chemical being released in excess amounts – which can lead to Parkinson's Disease – will be presented at The British Pharmacological Society's Summer Meeting in Edinburgh.

Dr Susan Duty from King's College London will present her latest work, aimed at stimulating 'trigger points' to stop the release of a chemical that can kill brain cells, at a special symposium that focuses on research into new types of drugs for treating disorders of the central nervous system.

Parkinson's disease is a degenerative brain disorder that is triggered by death or degeneration of nerve cells in a part of the brain called substantia nigra. This brain region is essential in maintaining normal movement so when the cells start to die off, patients lose ability to properly execute and control movements.

Dr Duty is aiming to find a way to slow down, stop or, even better, reverse the cell death process.

She says one of the contributing factors to nerve cell death is an excess of the chemical glutamate in the motor control pathways in the brain. An excess of this chemical changes the way these pathways operate and makes movement even less well controlled.

But more importantly, glutamate is one of the factors considered responsible for the demise of the brain cells.

At the symposium, which will be attended by leading UK and international pharmacologists, Dr Duty will be presenting her latest work on ways to stop glutamate being released.

Dr Duty said: "The way we hope to achieve this is by stimulating protein targets on the nerve cell called metabotropic glutamate receptors. Certain types of these receptors, when stimulated, are known to prevent release of glutamate in other brain regions. We, and others, have now taken these ideas into regions relevant to Parkinson's disease in the hope of reversing both the clinical signs and cell death associated with this condition."

Dr Duty says that current drugs can only treat the symptoms but not the underlying cause of the disease: "They provide relief of symptoms by replacing the chemical, dopamine, which the dying cells would normally secrete in order to maintain proper control of movement.

"However, they do little to combat the ongoing progressive cell death meaning that symptoms get worse, higher doses of drug are needed to control the worsening symptoms, the result being appearance of disabling side-effects such as involuntary flailing limb movements and painful twisting of joints.

"Given the disease is progressive in nature, the continued death of cells in the substantia nigra leads to gradual worsening of symptoms and decline in patients' quality of life over time. Finding drugs that can provide protection or repair to the dying cells – as well as relieve the clinical signs of Parkinson's – is therefore a key area of interest in this field."

Dr Duty and colleagues have recently published findings showing that stimulating certain classes of metabotropic glutamate receptor can reverse symptoms in a preclinical model of Parkinson's disease.

"More recently, we have identified which specific type of receptor is involved," she says. "By targeting specific receptors it is hoped that side-effects will be minimised as fewer targets elsewhere in the brain will be stimulated.

"We also have good evidence now that stimulating these receptors can provide protection to the dopamine-containing nerve cells in preclinical models of Parkinson's disease and that the protected nerve cells function normally and are able to help restore movement control."

The BPS Summer Meeting will be held at The University of Edinburgh from Wednesday 8 to Friday 10 July 2009.

It brings together leading pharmacologists from the UK, Europe and beyond, with presentations on the latest pharmacological developments to tackle a range of conditions, including respiratory disease, Alzheimer's, Parkinson's, stroke and atherosclerosis.

Dr Duty will give a presentation – 'Group III metabotropic glutamate receptors (mGluRs) as potential targets for the treatment of Parkinson's disease' – at a symposium entitled 'Metabotropic glutamate receptors: advancing novel drugs for treating CNS disorders' on Wednesday 8 July 2009.


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Cite This Page:

University of Manchester. "Hitting Cell Hot Spot Could Help Thwart Parkinson's Disease." ScienceDaily. ScienceDaily, 9 July 2009. <www.sciencedaily.com/releases/2009/07/090707201222.htm>.
University of Manchester. (2009, July 9). Hitting Cell Hot Spot Could Help Thwart Parkinson's Disease. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/07/090707201222.htm
University of Manchester. "Hitting Cell Hot Spot Could Help Thwart Parkinson's Disease." ScienceDaily. www.sciencedaily.com/releases/2009/07/090707201222.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins