Featured Research

from universities, journals, and other organizations

Design Tool For Materials With A Memory

Date:
July 21, 2009
Source:
Fraunhofer-Gesellschaft
Summary:
Shape memory alloys can "remember" a condition. If they are deformed, a temperature change can be enough to bring them back to their original shape. A simulation calculates the characteristics of these materials.

Shape memory alloys can "remember" a condition. If they are deformed, a temperature change can be enough to bring them back to their original shape. A simulation calculates the characteristics of these materials.
Credit: Image courtesy of Fraunhofer-Gesellschaft

Shape memory alloys can “remember” a condition. If they are deformed, a temperature change can be enough to bring them back to their original shape. A simulation calculates the characteristics of these materials.

Related Articles


It seems like a magic trick. A man takes a paper clip and bends it in such a way that it merely resembles a crooked piece of wire. Then, he throws the clip into a bowl of hot water. Within a fraction of a second, the metal wire returns to the shape of a paper clip. This phenomenon is called the shape memory effect. It can be observed in certain metallic alloys, known as shape memory alloys.

These kinds of materials are ideal for many applications. For instance, in aerospace technologies: solar sails can unfold in outer space thanks to shape memory alloys. The medical sciences, too, rely on their characteristics. One example is cardiology: stents are small tube-shaped, metal grid frameworks. They are folded together and inserted into blood vessels where they expand and prevent the vessels from becoming blocked.

However, it is a long road towards achieving a fully developed product. The characteristics of shape memory alloys are complex and therefore difficult to predict. Engineers must produce many prototypes before they achieve a fully operational component with the desired characteristics. Researchers at the Fraunhofer Institute for Mechanics of Materials IWM have found a quicker way to reach their goal: “The numerical simulation which we have developed already answers many questions upfront, long before a prototype exists,” explains IWM project manager Dr. Dirk Helm.

With the help of these simulations, the scientists have developed various objects, including a minuscule forceps for endoscopy. Normally, such micro forceps can only be created with joints. How can a component be produced that has such small dimensions, is elastic, can be thoroughly sterilized and has no joints? The computer supplies the answer: with the help of numerical simulation models, the researchers could calculate in advance the most important characteristics of the component, such as its strength and clamping force, and efficiently develop and manufacture the elastic component.

“Normally, many tests with various prototypes would need to be conducted,” Dr. Helm explains. “By using simulations, we can avoid producing most of these prototypes. This saves costs because the raw materials for the shape memory alloys are very expensive and are sometimes difficult to work with.” In addition, the researchers can estimate through simulations how durable the modern materials are.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Design Tool For Materials With A Memory." ScienceDaily. ScienceDaily, 21 July 2009. <www.sciencedaily.com/releases/2009/07/090713114457.htm>.
Fraunhofer-Gesellschaft. (2009, July 21). Design Tool For Materials With A Memory. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/07/090713114457.htm
Fraunhofer-Gesellschaft. "Design Tool For Materials With A Memory." ScienceDaily. www.sciencedaily.com/releases/2009/07/090713114457.htm (accessed October 25, 2014).

Share This



More Computers & Math News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins