Featured Research

from universities, journals, and other organizations

Induced Pluripotent Stem Cells Repair Heart, Study Shows

Date:
July 21, 2009
Source:
Mayo Clinic
Summary:
In a proof-of-concept study, researchers have demonstrated that induced pluripotent stem (iPS) cells can be used to treat heart disease. iPS cells are stem cells converted from adult cells.

In a proof-of-concept study, Mayo Clinic investigators have demonstrated that induced pluripotent stem (iPS) cells can be used to treat heart disease. iPS cells are stem cells converted from adult cells. In this study, the researchers reprogrammed ordinary fibroblasts, cells that contribute to scars such as those resulting from a heart attack, converting them into stem cells that fix heart damage caused by infarction.

The findings appear in the current online issue of the journal Circulation.

"This study establishes the real potential for using iPS cells in cardiac treatment," says Timothy Nelson, M.D., Ph.D., first author on the Mayo Clinic study. "Bioengineered fibroblasts acquired the capacity to repair and regenerate infarcted hearts."

This is the first application of iPS-based technology for heart disease therapy. Previously iPS cells have been used on only three other disease models: Parkinson's disease, sickle cell anemia and hemophilia A. The ultimate goal is to use iPS cells derived from patients to repair injury. Using a person's own cells in the process eliminates the risk of rejection and the need for anti-rejection drugs. One day this regenerative medicine strategy may alleviate the demand for organ transplantation limited by donor shortage, the researchers say.

"This iPS innovation lays the groundwork for translational applications," comments Andre Terzic, M.D., Ph.D., Mayo Clinic physician-scientist and senior author. "Through advances in nuclear reprogramming, we should be able to reverse the fate of adult cells and customize 'on demand' cardiovascular regenerative medicine."

From Damage to Repair

The Mayo Clinic team genetically reprogrammed fibroblasts via a "stemness-related" human gene set to dedifferentiate into an iPS cell capable of then redifferentiating into new heart muscle. When transplanted into damaged mouse hearts, iPS cells engrafted after two weeks, and after four weeks significantly contributed to improved structure and function of the damaged heart, in contrast to ineffective ordinary fibroblasts.

Compared to non-engineered fibroblasts, the iPS cells:

  • Restored heart muscle performance lost after the heart attack
  • Stopped progression of structural damage in the damaged heart
  • Regenerated tissue at the site of heart damage

The Mayo research team included Almudena Martinez-Fernandez, Pharm.D.; Satsuki Yamada, M.D., Ph.D.; Carmen Perez-Terzic, M.D., Ph.D.; and Yasuhiro Ikeda, D.V.M., Ph.D.; along with Lois Rowe and Jonathan Nesbitt. The research was supported by the National Institutes of Health, American Heart Association, American Society for Clinical Pharmacology and Therapeutics, National Hemophilia Foundation, La Caixa Foundation Graduate Program, Marriott Individualized Medicine Program, Marriott Heart Disease Research Program, and Mayo Clinic.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Induced Pluripotent Stem Cells Repair Heart, Study Shows." ScienceDaily. ScienceDaily, 21 July 2009. <www.sciencedaily.com/releases/2009/07/090720163539.htm>.
Mayo Clinic. (2009, July 21). Induced Pluripotent Stem Cells Repair Heart, Study Shows. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2009/07/090720163539.htm
Mayo Clinic. "Induced Pluripotent Stem Cells Repair Heart, Study Shows." ScienceDaily. www.sciencedaily.com/releases/2009/07/090720163539.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins