Featured Research

from universities, journals, and other organizations

Tension In Axons Is Essential For Synaptic Signaling, Researchers Report

Date:
August 24, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Every time a neuron sends a signal -- to move a muscle or form a memory, for example -- tiny membrane-bound compartments, called vesicles, dump neurotransmitters into the synapse between the cells. Researchers report that this process, which is fundamental to the workings of the nervous system, relies on a simple mechanical reality: Tension in the axon of the presynaptic neuron is required.

University of Illinois doctoral student Scott Siechen (left), mechanical science and engineering professor Taher Saif and their colleagues found that tension in axons is required for proper neuron signaling.
Credit: Photo by L. Brian Stauffer, U. of I. News Bureau

Every time a neuron sends a signal – to move a muscle or form a memory, for example – tiny membrane-bound compartments, called vesicles, dump neurotransmitters into the synapse between the cells. Researchers report that this process, which is fundamental to the workings of the nervous system, relies on a simple mechanical reality: Tension in the axon of the presynaptic neuron is required.

Without this tension, the researchers found, the vesicles that must haul their chemical cargo to the synapse for neuronal signaling would instead disperse.

The new findings appear this week in the Proceedings of the National Academy of Sciences.

"There is no controversy here," said University of Illinois mechanical science and engineering professor Taher Saif, who conducted the study with biology professor Akira Chiba, now at the University of Miami. Chiba's former doctoral student Scott Siechen and Saif's former doctoral student Shengyuan Yang also contributed significantly to the study. "We're not saying that you don't need chemical or electrical signals for the neurons to fire. All we're saying is that you also need tension in the axons."

The discovery was made almost by accident, Saif said. In a study of fruit fly embryos, Siechen wanted to know whether severing the growing end of an axon would prevent it from reaching its target, a nearby muscle cell.

After severing the axon, he watched the growing tip of the axon, called the growth cone, continue to grow toward and touch the muscle cell. But when he stained it, he noticed that the vesicles in the axon tip were dispersed, not clustered together near the synapse as they normally are.

He then repeated the experiment, but used a micropipette to pull on the severed end of the axon before staining it. This time the vesicles appeared at high density near the synapse.

This indicated that tension in the severed axon was somehow directing the vesicles to collect near the synapse, Saif said.

"The axon is physically cut off, chemically cut off, electrically cut off from the rest of the cell," he said. "So it appears that tension is all that was needed to keep the vesicles in place. But the question is, what keeps the vesicles there?"

Saif hypothesized that the axons in the embryo must be under tension. Otherwise – like a guitar string that is too loose to tune – it would not readily respond to changes in tension.

Using nanoscale probes developed in Saif's laboratory to gently deform an intact axon, the researchers found that the resting tension in a typical axon is about 1 nanonewton. (One newton has been described as the force required to hold a standard-sized apple against the pull of gravity; a nanonewton is one-billionth of that force.) Saif's hypothesis was thus proved true.

The researchers next turned their attention to the structure of the axon terminal, the region that lies closest to the synapse. This region contains many proteins, including actin, which is found in virtually all cell types and is known for maintaining cell shape and generating tension. Under the right conditions, individual actin molecules link together into ropelike filaments. Another protein, myosin, acts as a motor that connects the fibers and causes them to slide in relation to one another. This sliding can increase or decrease tension in the cell.

Other researchers have suggested that actin in axon terminals acts as a kind of scaffold that holds the vesicles near the synapse, Saif said. If that is true, he said, then tension also plays a significant role in the process. It appears that actin cannot properly scaffold the vesicles without sufficient tension in the axon terminal. Further research is needed to identify the exact mechanism that allows this to work, he said.

"This study shows that tension in neurons might be one of the parameters so far overlooked in the quest for understanding learning and memory," Saif said. "We know from studies done elsewhere that tension in neurons creates folds in the brain, and it may be that a lack of tension in the neuron or a lack of the neuron's ability to generate tension is linked with memory loss or other neurological disorders."


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Tension In Axons Is Essential For Synaptic Signaling, Researchers Report." ScienceDaily. ScienceDaily, 24 August 2009. <www.sciencedaily.com/releases/2009/07/090720190556.htm>.
University of Illinois at Urbana-Champaign. (2009, August 24). Tension In Axons Is Essential For Synaptic Signaling, Researchers Report. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/07/090720190556.htm
University of Illinois at Urbana-Champaign. "Tension In Axons Is Essential For Synaptic Signaling, Researchers Report." ScienceDaily. www.sciencedaily.com/releases/2009/07/090720190556.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins