Featured Research

from universities, journals, and other organizations

Muscular Protein Bond -- Strongest Yet Found In Nature

Date:
August 14, 2009
Source:
Technische Universitaet Muenchen
Summary:
Scientists have shed new light on the roots of mechanical strength in muscle tissue by probing -- through single-molecule experiments -- a super-stable protein bond, the titin-telethonin complex.

The Titin-Telethonin-complex, fixed at the tip of an atomic force-microscope.
Credit: Image courtesy of Technische Universitaet Muenchen

A research collaboration between Munich-based biophysicists and a structural biologist in Hamburg is helping to explain why our muscles, and those of other animals, don't simply fall apart under stress. Their findings may have implications for fields as diverse as medical research and nanotechnology.

Related Articles


The real strength of any skeletal muscle doesn't start with exercise; it comes ultimately from nanoscale biological building blocks. One key element is a bond involving titin, a giant among proteins. Titin is considered a molecular "ruler" along which the whole muscle structure is aligned, and it acts as an elastic spring when a muscle is stretched.

Titin plays a role in a wide variety of muscle functions, and these in turn hinge on the stability with which it is anchored in a structure called the sarcomeric Z-disk. Research published in 2006 showed this anchor to be a rare palindromic arrangement of proteins – that is, it "reads" the same way forward and backward – in which two titin molecules are connected by another muscle protein, telethonin. Simulations have pointed toward a network of tight hydrogen bonds linking titin and telethonin as a source of stability. But direct measurements that would further advance this investigation have been lacking, until today's publication of experimental results in the Proceedings of the National Academy of Sciences (PNAS). The authors are Prof. Matthias Rief and Morten Bertz, M.Sc., of the Technische Universitδt Mόnchen (TUM) – who also are members of a Munich-based "excellence cluster" called the Center for Integrated Protein Science – and Prof. Matthias Wilmanns of the European Molecular Biology Laboratory in Hamburg.

These first-ever measurements of mechanical stability in the titin-telethonin protein complex show it to be a highly "directed" bond, extremely strong but only along the lines of natural physiological stress. Thus even at the nanoscale, this complex is oriented to resist forces that reflect the macroscale function of the organism – contraction and relaxation of skeletal muscles.

Advanced biological and physical techniques gave the researchers a handle on this nanoscale "anchor" – basically allowing them to pull on the bond from various directions and measure its performance under stress. Single-molecule force spectroscopy was performed on a custom-built atomic force microscope. Well characterized mechanical "fingerprints" made it possible to distinguish single-molecule events from non-specific interactions as well as from multi-molecule events.

Their measurements confirm that in the direction that corresponds to muscular contraction and relaxation, the titin-telethonin complex is the strongest protein bond found so far in nature. When force was applied in different directions, the proteins of the complex slid apart. The bond can be compared to a mechanical hook that holds fast when pulled upward but otherwise uncouples easily.

The researchers anticipate that directedness of protein bonds will be an important concept in studying a variety of other molecular complexes that nature subjects to mechanical strain in living organisms. Better understanding could potentially inform physiological research and biomedical applications. Such insights might also inspire biomimetic research and design for nanotechnology.

The research is supported by the Deutsche Forschungsgemeinschaft, DFG grant RI990/3/1.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Morten Bertz, Matthias Wilmanns, and Matthias Rief. The Titin-Telethonin complex: A directed, super stable molecular bond in the muscle Z-disk. Proceedings of the National Academy of Sciences, July 20, 2009

Cite This Page:

Technische Universitaet Muenchen. "Muscular Protein Bond -- Strongest Yet Found In Nature." ScienceDaily. ScienceDaily, 14 August 2009. <www.sciencedaily.com/releases/2009/07/090720190611.htm>.
Technische Universitaet Muenchen. (2009, August 14). Muscular Protein Bond -- Strongest Yet Found In Nature. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/07/090720190611.htm
Technische Universitaet Muenchen. "Muscular Protein Bond -- Strongest Yet Found In Nature." ScienceDaily. www.sciencedaily.com/releases/2009/07/090720190611.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) — The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins