Featured Research

from universities, journals, and other organizations

New DNA Vaccine Inhibits Deadly Skin Cancer In Mice

Date:
July 21, 2009
Source:
American Society for Microbiology
Summary:
A new DNA vaccine inhibited malignant melanoma, a deadly form of skin cancer, in mice by eliciting antibodies that target a gastrin-releasing peptide which is known to play a key role in cancer development.

A new DNA vaccine inhibited malignant melanoma, a deadly form of skin cancer, in mice by eliciting antibodies that target a gastrin-releasing peptide which is known to play a key role in cancer development.

Gastrin-releasing peptide (GRP) is an important human peptide that regulates gastric acid secretion and motor function as well as elicits gastrin release. Previous research has shown that GRP plays a significant role in human cancers through atypical expression of the GRP receptor and GRP binding that activates cellular signaling and results in increased cell production and tumor formation. Anti-GRP antibodies have displayed promising antitumoral activity and DNA vaccines targeting GRP are a hopeful therapeutic approach.

In the study researchers developed a novel anti-GRP DNA vaccine including various immunoadjuvants (substances to improve the immune response) and monitored anti-GRP antibody levels in vaccinated mice. Intramuscular injections induced high levels of specific antibodies against GRP as well as suppressed the growth of melanoma cells. Additionally, researchers intravenously injected cells in the lungs and found that cells were highly diminished indicating that the vaccine may also inhibit cancer from spreading.

"In conclusion, we have demonstrated for the first time that immune responses which are elicited by a novel anti-GRP DNA vaccine suppress the proliferation and growth of melanoma tumors in mice," say the researchers. "The antiangiogenesis and antimetastastic activities of this DNA vaccine suggest a novel approach against various cancers, especially malignant melanoma."


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. (J. Fang, Y. Lu, K. Ouyang, G. Wu, H. Zhang, Y. Liu, Y. Chen, M. Lin, H. Wang, L. Jin, R. Cao, R.S. Roque, L. Zong, J. Liu, T. Li. Specific antibodies elicited by a novel DNA vaccine targeting gastrin-releasing peptide inhibit murine melanoma growth in vitro. Clinical and Vaccine Immunology, 16. 7: 1033-1039

Cite This Page:

American Society for Microbiology. "New DNA Vaccine Inhibits Deadly Skin Cancer In Mice." ScienceDaily. ScienceDaily, 21 July 2009. <www.sciencedaily.com/releases/2009/07/090721110609.htm>.
American Society for Microbiology. (2009, July 21). New DNA Vaccine Inhibits Deadly Skin Cancer In Mice. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/07/090721110609.htm
American Society for Microbiology. "New DNA Vaccine Inhibits Deadly Skin Cancer In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/07/090721110609.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins