Featured Research

from universities, journals, and other organizations

Bad Mitochondria May Actually Be Good For You

Date:
July 23, 2009
Source:
American Society for Biochemistry and Molecular Biology
Summary:
Mice with a defective mitochondrial protein called MCLK1 produce elevated amounts of reactive oxygen when young; that should spell disaster, yet according to a new study these mice actually age at a slower rate and live longer than normal mice.

Mice with a defective mitochondrial protein called MCLK1 produce elevated amounts of reactive oxygen when young; that should spell disaster, yet according to a study in this week's JBC these mice actually age at a slower rate and live longer than normal mice.

Mitochondrial oxidative stress is a popular theory explaining the aging process; over time, reactive oxygen species produced by mitochondria while they make energy slowly accumulate and begin damaging cells, including the mitochondria. Several recent studies have begun to question this theory, though, and to get some more direct answers, Siegfried Hekimi and colleagues at McGill University examined the mitochondria of MCLK1-defective mice, a strain known for its longevity, at various ages.

What they found was that in young (3 month old) MCLK1-defective mice, mitochondria were quite energy inefficient and produced a lot of harmful oxygen radicals; yet surprisingly, when these mice were 23 months old, their mitochondria were working better than normal mice. So, despite the oxidative stress, these mice experienced less deterioration than normal.

To confirm whether MCLK1-defiency could be somehow protective, the researchers crossed MCLK1-defective mice with those lacking SOD2, a major protein antioxidant. Normally, SOD2-defective mice accumulate cellular damage quickly, yet when combined with MCLK1-defiency, they exhibited less damage and oxidative stress.

In explaining this seeming paradox, Hekimi and colleagues suggest that while MCLK1-defective mice produce more oxygen radicals from their mitochondria, their overall inefficiency results in less energy and fewer oxygen radicals being produced in other parts of a cell. Thus while these mice may have some higher risks of damage while young, they accumulate less damage as they age –a finding that seems to indicate the mitochondrial stress theory may not be correct.


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lapointe et al. Reversal of the Mitochondrial Phenotype and Slow Development of Oxidative Biomarkers of Aging in Long-lived Mclk1 /- Mice. Journal of Biological Chemistry, 2009; 284 (30): 20364 DOI: 10.1074/jbc.M109.006569

Cite This Page:

American Society for Biochemistry and Molecular Biology. "Bad Mitochondria May Actually Be Good For You." ScienceDaily. ScienceDaily, 23 July 2009. <www.sciencedaily.com/releases/2009/07/090722123753.htm>.
American Society for Biochemistry and Molecular Biology. (2009, July 23). Bad Mitochondria May Actually Be Good For You. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/07/090722123753.htm
American Society for Biochemistry and Molecular Biology. "Bad Mitochondria May Actually Be Good For You." ScienceDaily. www.sciencedaily.com/releases/2009/07/090722123753.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins